

Development of a vaccine candidate against Crimean-Congo Haemorrhagic Fever (CCHF) virus Stuart Dowall, Karen Buttigieg & Roger Hewson

Miles Carroll Head of Research National Infections Service: PHE Porton Down

Public Health England

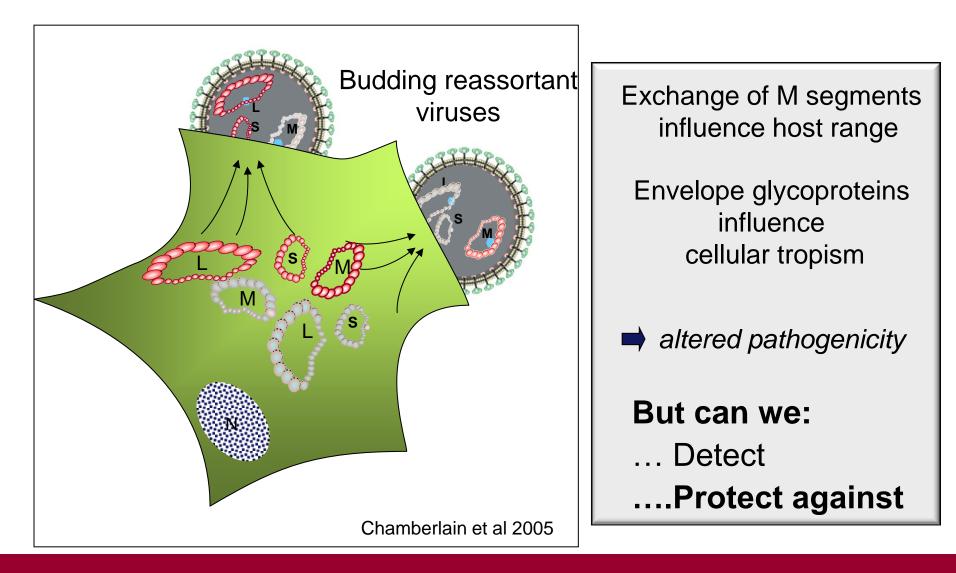
Detection, treatments and vaccines

Background

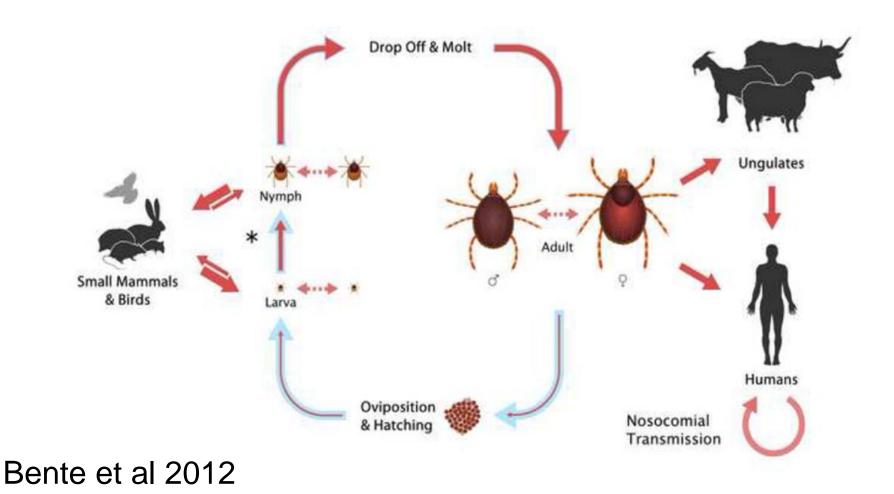
Crimean-Congo Haemorrhagic Fever (CCHF) virus:

- Severe human infection.
- Fatality rate 30% (9-50%).
- No FDA or European approved vaccine or treatment.
- ACDP Hazard Group 4 pathogen.
- Reservoired in ticks & wild life mammals, amplified in cattle sheep, goat, camel [No disease in animals]
- Transmission by tick bite or direct / indirect contact with infected blood/body fluids.

CCHF - Clinical Disease



- Incubation period 2-9 days
- Haemorrhagic state develops 3 5 days
- Petechial rash / ecchymoses in the skin
- Bleeding from the mucous membranes
 Epitaxsis, Haematuria, Haemoptysis
 - Loss of blood pressure shock
- Death 7-9 days [massive bleeding / cardiac arrest]



Re-assortment in CCHF viruses could lead to new viruses and new disease...

IMPLICATIONS FOR DIAGNOSTICS & VACCINE

CCHFV Transmission cycle

Transmission of CCHFV: No disease cuased in animals

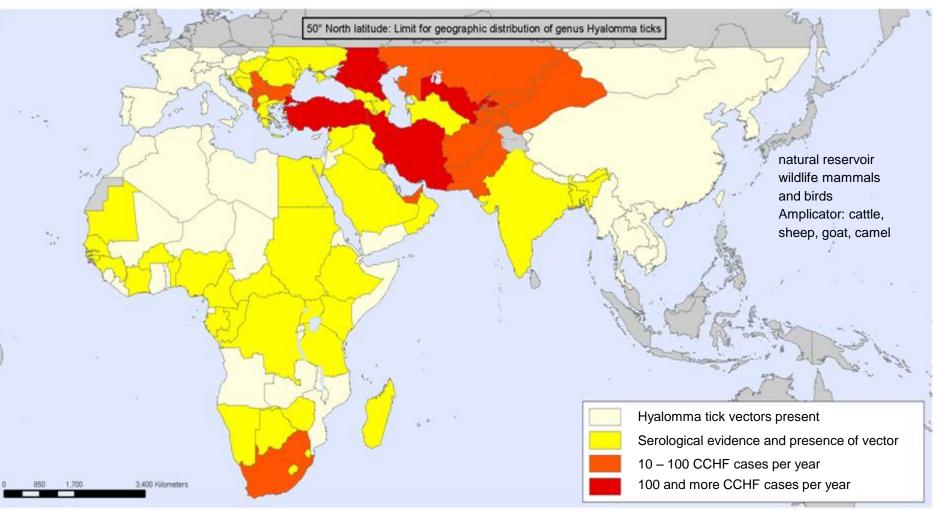
Ŵ

Public Health

England

Transmission to Health Care Workers

Year	Country	Primary cases	HCW Contacts	2ary/3ary HCW cases	Exposure
1976 Pakistan		1	ND*	10	Hospital care
1979 Dubai		1	ND	6	Hospital care
1979 Iraq		1	ND	2	Hospital care
1984 South Africa		2	35	8	Hospital care
1994	Pakistan	1	12	3	Surgery
1994	Pakistan	3	40	0	NA
1994	Pakistan	1	ND	3	Surgery
1995	Oman	2	ND	0	NA
1999	Iran	3	ND	0	NA
2000	Kenya	1	ND	0	NA
2000	Pakistan	1	ND	2	Hospital care
2001	Yugoslavia	1	ND	1	Intubation
2001	Albania	1	ND	1	Electrocardiogram
2002	Pakistan	3	154	2	Muco-cutaneous
2003	Turkey	1	5	0	NA
2002-2003	Turkey	50	62	0	NA
2003	Mauritania	1	ND	6	Hospital care
2004	Senegal-France	1	181	0	Hospital care
2005	Turkey	2	5	0	NA
Total		77	494	44	



*ND: not documented; NA: not applicable

7 7

Geographic distribution of CCHF

CCHF: sporadic ~ 2000 cases/year

Importance of CCHF

1. Spread of vector across Europe.

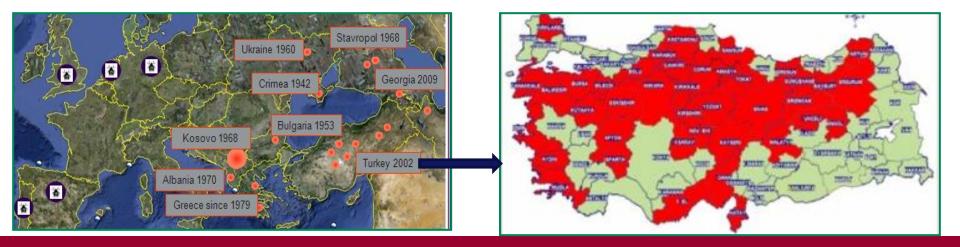
Crimean-Congo hemorrhagic fever in Europe: current situation calls for preparedness

H C Maltezou (helen-maltezou@ath.forthnet.gr)¹, L Andonova², R Andraghetti³, M Bouloy⁴, O Ergonul⁵, F Jongejan⁶, N Kalvatchev⁷, S Nichol⁸, M Niedrig⁹, A Platonov¹⁰, G Thomson¹¹, K Leitmeyer¹², H Zeller¹²

dicine and Infectious Disease (2010) 8, 139-143 Crimean—Congo hemorrhagic fever: Risk for emergence of new endemic foci in Europe? Helena C. Maltezou ^{a,*}, Anna Papa ^b

nternational Journal of Infectious Diseases (2009) 13, 659–66

Crimean-Congo hemorrhagic fever in southeastern Europe R.M. Vorou*


2. Increased incidence in tourism areas.

ternational Journal of Infectious Diseases (2009) 13, 713-716

Crimean-Congo hemorrhagic fever in Greece: a public health perspective Helen C. Maltezou^{a,*}, Anna Papa^D, Sotirios Tsiodras^{a,c}, Vasiliki Dalla^d, Efstratios Maltezos^e, Antonios Antoniadis^b

Clin Microbiol Infect 2010; 16: 843-847 Emergence of Crimean-Congo haemorrhagic fever in Greece A. Papa¹, V. Dalla², E. Papadimitriou¹, G. N. Kartalis² and A. Antoniadis¹

> Journal of Infectious Diseases (2009) 13. e431-e43 An outbreak of Crimean-Congo hemorrhagic fever in western Anatolia, Turkey Bülent Ertugrul ^{a,*}, Yavuz Uyar ^b, Kamil Yavas ^c, Cetin Turan ^a, Serkan Oncu ^a, Ozlem Saylak ^a, Ahmet Carhan ^b, Barcin Ozturk ^a, Nermin Erol ^c, Serhan Sakarya^a

Importance of CCHF

3. Threat is national and international

Antiviral Research 98 (2013) 248-260

The impact of Crimean-Congo hemorrhagic fever virus on public health Marc Mertens^a, Katja Schmidt^a, Aykut Ozkul^b, Martin H. Groschup^{a,*}

uro Surveill. 2010;15(10):pii=19504

Crimean-Congo hemorrhagic fever in Europe: current situation calls for preparedness

H C Maltezou (helen-maltezou@ath.forthnet.gr)³, L Andonova², R Andraghetti², M Bouloyª, O Ergonul⁵, F Jongejan⁵, N Kalvatchev7, S Nichol®, M Niedrigº, A Platonov¹º, G Thomson¹, K Leitmeyer¹², H Zeller¹²

RAPID COMMUNICATIONS

Sequencing and phylogenetic characterisation of a fatal Crimean – Congo haemorrhagic fever case imported into the United Kingdom, October 2012

B Atkinson', J Latham', J Chamberlain', C Logue', L O'Donoghue', J Osborne', G Carson', T Brooks', M Carroll', M Jacobs', S Hopkins', R Hewson (Roger.Hewson@hpa.org.uk)' 1. Microbiology Services Division, Health Protection Agency, Porton Down, Salisbury, United Kingdom 2. High Security Infectious Disease Unit, Royal Free Hospital, London, United Kingdom

BBGNEWS

Crimean-Congo Viral Haemorrhagic Fever case in Glasgow Non-fatal case of Crimean-Congo haemorrhagic fever imported into the United Kingdom (ex Bulgaria), June 2014

S Lumley (Sarah.Lumley@phe.gov.uk)¹, B Atkinson¹, S D Dowall¹, J K Pitman², S Staplehurst³, J Busuttil³, A J Simpson³, E J Aarons³, C Petridouª, M Nijjarª, S Gloverª, T J Brooks³å, R Hewson³å

CCHF listed in top 10 vectorborne diseases that have the greatest potential to affect European citizens

WHO Workshop Oman Dec 2015

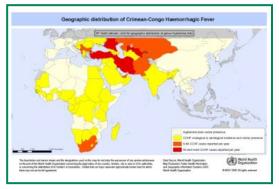
Importance of CCHF

4. Potential bioweapon

Etem AKBAS⁻ Mersin University Faculty of Medicine, Department of Medical Biology and Genetics, Turkey

Centers for Disease Control and Prevention CDC 24/7: Saving lives, protecting people, reducing health costs

Bioterrorism Agents/Diseases


5. Threat to armed forces.

The past and present threat of vector-borne diseases in deployed

troops

F. Pages^{1,2}, M. Faulde^{3,4}, E. Orlandi-Pradines^{1,2} and P. Parola^{2,5}

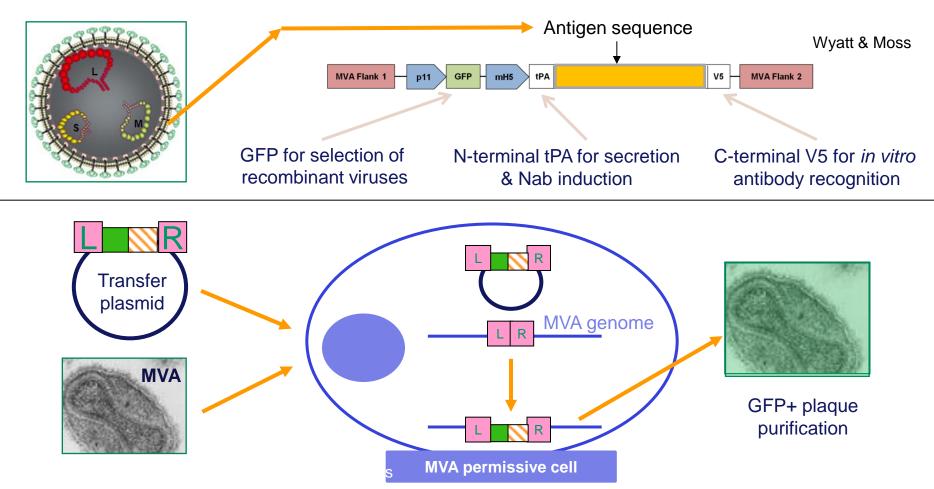
Vaccines & Therapies for CCHF

No vaccines or antiviral drugs are approved for CCHF by FDA or EMA.

Bulgarian vaccine candidate has major disadvantages:

- Requires live CCHF virus
- Crude preparation (non-standardised homogenisation of mouse brain)
- No efficacy studies, no interest to generate data package since 70s
- Is not acceptable to FDA/MHRA/EMA approval

Alternative approach badly needed for a modern CCHF vaccine that can meet regulatory approval and is proven to be effective.


Development of the vaccine candidate

Our approach: We have used Modified Vaccinia Ankara (MVA) as a viral vector to induce immune responses against an inserted CCHF antigens.

Favourable properties of MVA:

- Human safety history: >100,000 doses in 1970s with no adverse effects.
- Human cells non-permissive.
- Induction of humoral and cellular immunity.
- Industrial GMP established.
- Thermostable.
- Production of recombinant proteins.
- Clear commercial opportunities
 - Vaxgene, OBM, Bavarian Nordic, Jansen/Emergent → all in clinical trials with MVA-based vaccines.
 - Approximately extra 100,000 people vaccinated with no adverse signs.
- Inexpensive, low cost approach

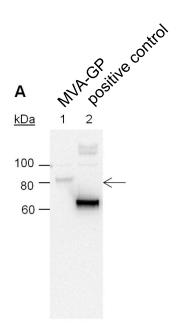
Public Health England Development of the vaccine candidate

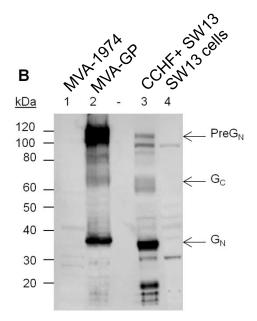
Choice of CCHF vaccine antigen

Nucleoprotein [NP] (S-segment of CCHFv)

- Highly conserved between CCHFv strains.
- Most immunogenic protein in CCHFv.
- Successfully used for other viruses.

Glycoprotein [GP] (M-segment of CCHFv)


- External envelope spike glycoprotein readily accessible by antibodies.
- GPs commonly and successfully used for other virus pathogens.


→ Two vaccine constructs made: MVA-NP and MVA-GP.

Pathogen	Vaccine construct	Protection effects		
Ebola virus	Venezuelan equine encephalitis virus replicons	Protection in C57BL/6 mice		
	Cytomegalovirus	Protection in mice		
Hantavirus	Recombinant vaccinia virus	Partial protection in Mongolian gerbils		
Influenza virus	DNA prime and recombinant adenovirus boost	Protection in mice		
	Recombinant adenovirus	Protection in mice		
Lassa virus	Recombinant vaccinia virus	Protection in guinea pigs		
Measles	Recombinant vaccinia virus	Protection from encephalitis in rats		
Pichinde virus	Recombinant vaccinia virus	Delayed mortality in Syrian hamsters		
Rabies virus	Raccoon poxvirus	Protection in mice against lethal challenge		
Rift Valley fever virus	DNA vaccine	Partial protection of mice against lethal challenge		

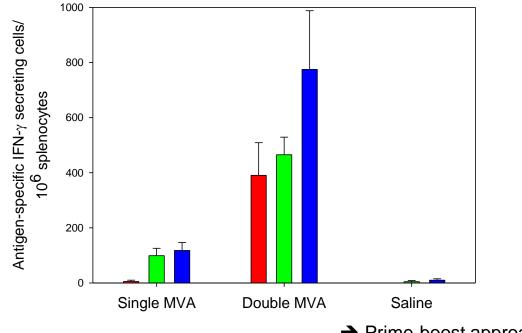
Confirmation of antigen expression

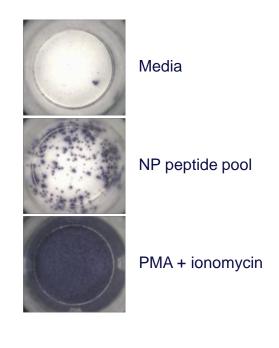
Public Health England

Anti-V5 antibody (expected size of GP-V5 fusion protein = 76.6kDa, positive control protein = 62kDa)

Anti-CCHF rabbit polyclonal sera (similar post-translational cleavages in MVA-GP to native protein)

(NB: Findings were similar with MVA-NP construct showing positive protein expression)


Balb/C mice, 10⁷ pfu delivered i.m.


Single MVA-NP dose Double MVA-NP dose Saline control

Animals culled (n=3/group) at days 3, 8 and 12 post-vaccination for immunogenicity studies.

Antigen-specific T-cell responses made to CCHF NP peptides.

(20mers overlapping by 8aa, two pools containing 31 peptides)

→ Prime-boost approach gave greater frequencies of Ag-specific T-cells

IFN-γ **ELISPOT** assay

×

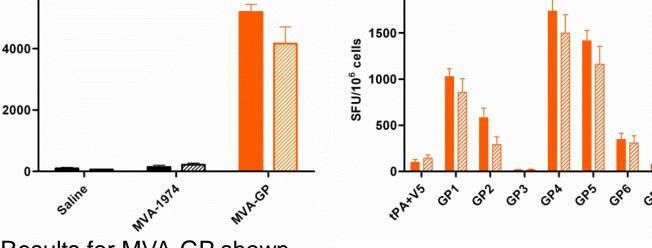
6000-

SFU/10⁶ cells

England

Solid bars = 129Sv/Ev mice; hatched bars = A129 mice [IFN- $\alpha/\beta R^{-/-}$]

Summed antigen responses

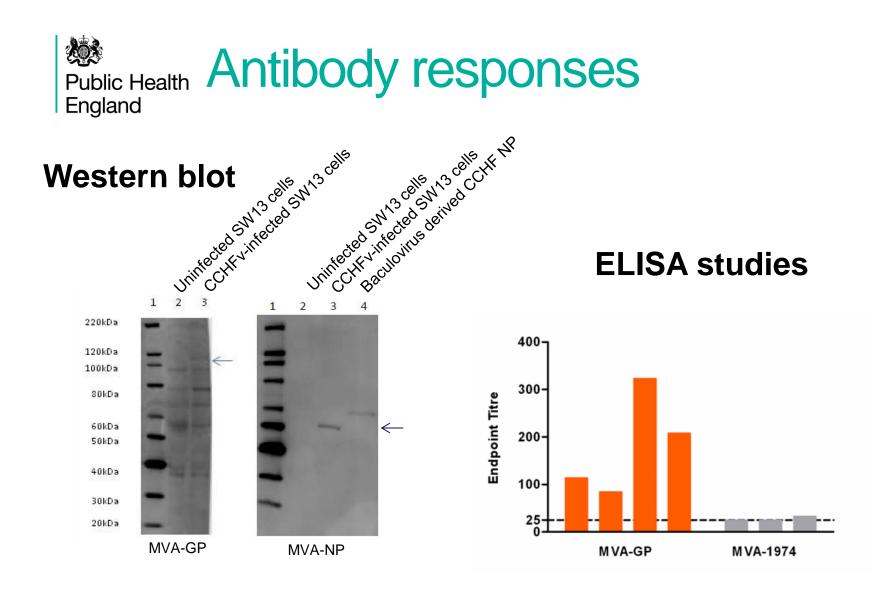

NA-197A MNA.GP Saline

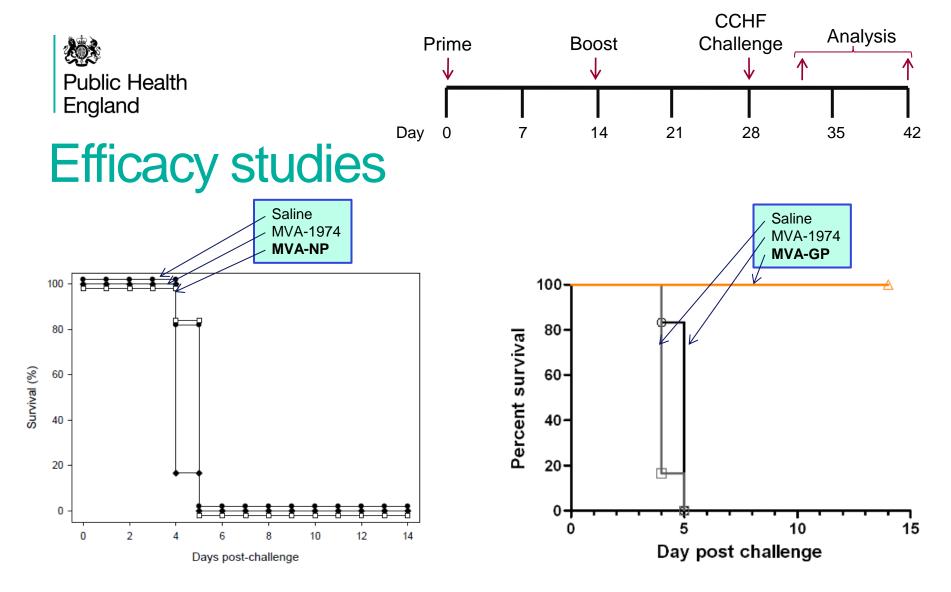
- Results for MVA-GP shown.
 - → Similar responses in 129Sv/Ev and A129 mice were detected.

Public Health Responses in A129 vs. wild-type mice

Individual peptide pools

- → Immunogenicity was not evenly distributed across the antigen.
- → Responses were specific to the glycoprotein, and similar between mouse strains.


2000


Media

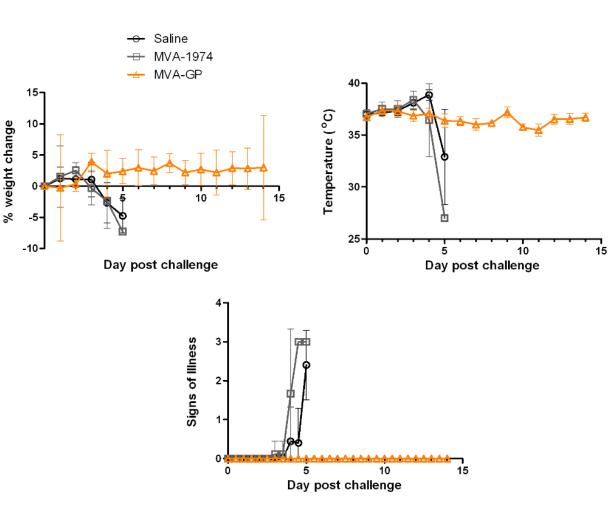
GP peptides

Both MVA-GP and MVA-NP vaccines induced antigen-specific antibodies.

No protective effects seen with MVA-NP, but 100% protection from lethal challenge with MVA-GP

→ First demonstration of CCHF vaccine efficacy

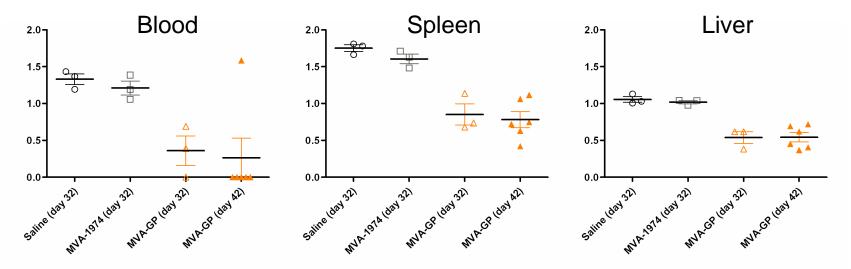
Clinical measurements


%

- MVA-GP immunised animals showed no clinical evidence of CCHFv infection post-challenge:
- No loss in weight.

Public Health

England

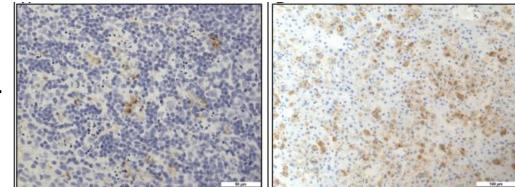

- No significant temperature deviations.
- Clinical signs scored • healthy on all occasions.

Viral loads

RT-PCR for CCHFv gene expression (normalised to mouse HPRT gene expression).

Day 32 = 4 days post-challenge Day 42 = 14 days post-challenge (end of study)

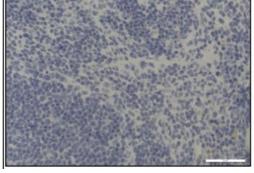
Viral load was significantly lower in MVA-GP vaccinated mice than in control groups.


Histology

Immunostaining

Immunised A129 mice, 4 days post-challenge MVA-1974

Spleen


Liver

A few, scattered cells with cytoplasmic staining within the parenchyma.

Frequent, diffuse, positively stained hepatocytes.

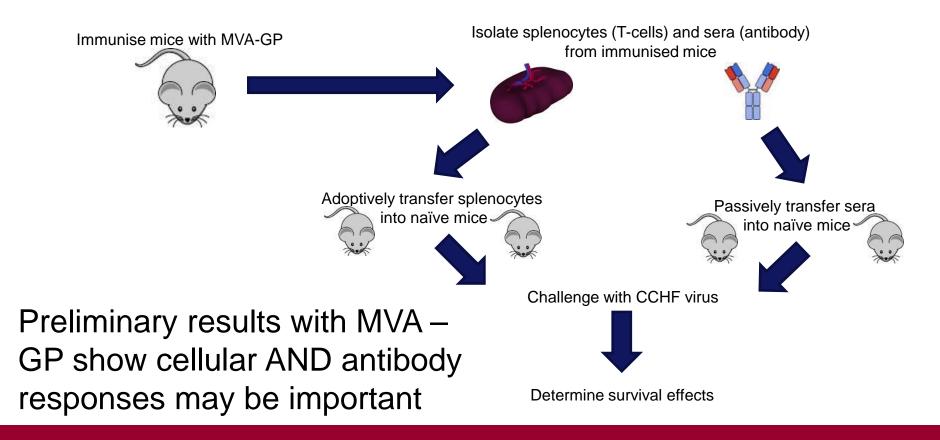
MVA-GP

Normal parenchyma.

A few, positively stained cells within an inflammatory cell focus.

Mechanism of Protection

Previous reports and anecdotal evidence point to importance of antibody response in protection


Ergonul, O., *Crimean-Congo haemorrhagic fever*. Lancet Infect Dis, 2006. 6(4): p. 203-14.

Kubar, A., et al., *Prompt administration of Crimean-Congo hemorrhagic fever (CCHF) virus hyperimmunoglobulin in patients diagnosed with CCHF and viral load monitorization by reverse transcriptase-PCR.* Jpn J Infect Dis, 2011. 64(5): p. 439-43.

Tishkova, F. et al., *CCHF survivors show strong neutralising antibodies are protected from further infection.* Mikrobiologiya i Virusologiya

Passive/Adoptive transfer

- Vaccine is based on CCHF glycoproteins expressed in a viral vector.
- CCHF-specific antibodies and T-cells.
- 100% protection from disease in a pre-clinical model.
- MoA appears to rely on both T cell and antibody

Next steps include:

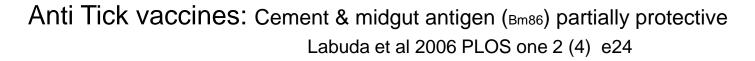
- NHP pre-clinical data package
- Assess cross neutralisation of CCHFv strains
- Assess prime boost stretegies

Buttigieg et al., (2014) PLOS one.9 (3) 91516-28

Public Health

England

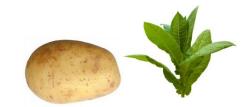
Alternative Vaccine Approaches


DNA-based vaccines expressing the CCHFv M segment Spik K, et al., (2006) Vaccine 24: 4657–66.

Recombinant tobacco leaves expressing G_N and G_C Ghiasi et al., (2011). Clin Vaccine Immunol 18: 2031–7.


Inactivated virus from cell culture

Canakoglu et al., (2015). PLOS NTD.


CCHF Virus Like Particles:

Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial

Ana Maria Henao-Restrepo, Ira M Longini, Matthias Egger, Natalie E Dean, W John Edmunds, Anton Camacho, Miles W Carroll, Moussa Doumbia, Bertrand Draguez, Sophie Duraffour, Godwin Enwere, Rebecca Grais, Stephan Gunther, Stefanie Hossmann, Mandy Kader Kondé, Souleymane Kone, Eeva Kuisma, Myron M Levine, Sema Mandal, Gunnstein Norheim, Ximena Riveros, Aboubacar Soumah, Sven Trelle, Andrea S Vicari, Conall H Watson, Sakoba Kéïta, Marie Paule Kieny*, John-Arne Røttingen*

Summary

28

Background A recombinant, replication-competent vesicular stomatitis virus-based vaccine expressing a surface glycoprotein of Zaire Ebolavirus (rVSV-ZEBOV) is a promising Ebola vaccine candidate. We report the results of an interim analysis of a trial of rVSV-ZEBOV in Guinea, west Africa.

100% Efficacy for preventing tertiary cases in ring vaccinations: 16 cases in 21 day vaccine delay compared to 0 for no delay

VSV as a vector for a CCHF vaccine?

Vaccine Target

- Healthcare workers in endemic countries
- At risk occupations; abattoirs, farmers
- At risk local population in endemic countries
- International response healthcare workers
- Military personnel
- Farm animals

Acknowledgements

Stuart Dowall

Karen Buttigieg

Stephen Findlay-Wilson

Ola Miloszewska

Emma Rayner

Geoff Pearson

Graham Hall

Roger Hewson

Bernie Moss (NIH)

Linda Wyatt (NIH)

Ali Mirazimi (Karolinska Institute)