

The making of Bovela[®] - a vaccine against bovine viral diarrhea

Konrad Stadler, Boehringer Ingelheim Veterinary Research Center

Manchester. January 6, 2016

In general, a vaccine should be safe and efficient.

- In the BVDV system, **efficacy** not only means the prevention of clinical symptoms after challenge of vaccinated animals, but also the absence of transmission of challenge virus to the fetus.
- In the BVDV system, **safety** not only means the abscence of clinical symptoms after vaccination but also the absence of transmission of vaccine virus to the fetus.

BVDV Vaccines (examples)

Vaccines with fetal protection

- Bovidec (Virbac)
- Bovilis BVD-MD (Intervet)
- (Pregsure BVD (Pfizer)
- Elite (BIV)
- Express (BIV)
- Vacoviron (Merial)

- → inactivated
- → inactivated
- \rightarrow inactivated)
- → inactivated
- → live (not for pregnant animals!)
- \rightarrow live (not for pregnant animals!)

Vaccines without fetal protection

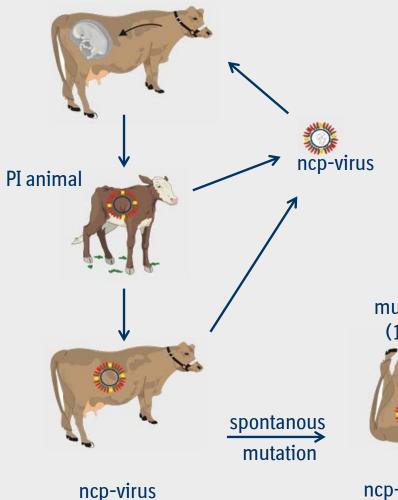
Mucobovin (Merial) → inactivated

Classification

Family	Flaviviridae
Genus	Flavivirus Hepacivirus Pestivirus
Species	bovine viral diarrhea virus 1 (BVDV-1) bovine viral diarrhea virus 2 (BVDV-2) Border disease Virus (BDV) classical swine fever virus (CSFV)

Biotypes:

For all 4 pestivirus species cytopathogenic (cp) and noncytopathogenic (ncp) isolates have been described


Factsheet: BVDV

- Enveloped, + stranded RNA virus with a diameter of 40-60 nm
- Causative agent of bovine viral diarrhea
- Endemic in most countries of the world
- Host spectrum: Restricted to members of the order Artiodactyla (e.g. pig, deer), no zoonotic potential
- Effects of BVDV infections of cattle can range from inapparent to lethal disease (mucosal disease, hemorrhagic syndrome)

Pathogenesis of mucosal disease

Vertical infection of the foetus with ncp-virus between day 60 - 120 of gestation

- → persistent infection (PI)
- → virus specific immunotolerance
- (but innate immune system is still active)
- → PI animals can be clinically unapparent

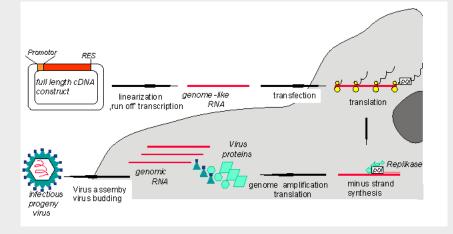
Spontaneous mutation to cp-Virus Death caused by Mucosal Disease (MD)

mucosal disease (100% lethal)

ncp-virus + cp-virus

Vaccine requirement profile

- clinical protection
- good stimulation of the immune system
- > easy application
- protection against BVDV type 1 und type 2
- protection against fetal transmission
- protection from virus shedding
- marker vaccine


Combine the safety profile of killed vaccines with the efficacy profile of a live vaccine

How did the project start in 199x?

Key ,technology' invention in Gregor Meyers' lab: Generation of an infectious copy of a BVDV virus

- \rightarrow Enabling efficient manipulation of the BVD virus
- → Step-wise understanding of BVDV interaction with host innate immune system (major contribution by Norbert Tautz, Nicolas Ruggli and Bryan Charleston)
- $\rightarrow E^{RNS}$ and N^{pro} being key players in modulating IFN expression level

- The autoprotease N^{pro} is not essential for virus replication
- N^{pro} interferes with the innate immune response of infected cells: N^{pro} induces degradation of interferon regulatory factor 3 (IRF-3) via the proteasome
- The loss of the N^{pro} function on the interferon system does not lead to strong attenuation

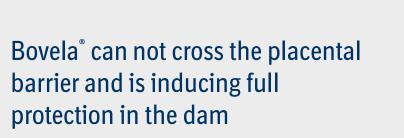
Glycoprotein E^{rns}

- E^{rns} is part of the virus particle (figure)
- essential structural protein
- target for neutralizing antibodies (only weak neutralization)
- binds to carbohydrates on target cells
- RNase activity dispensable for virus replication in cell culture
- The E^{rns} RNase is engaged in blocking the type 1 interferon response to pestivirus infection

Hypothesis for vaccine concept

- N^{pro} is unique protein for pestiviruses (cystein protease) dispensable for virus replication
- E^{rns} with RNase its function is dispensable for virus replication
- N^{pro} and E^{rns} are antagonists to the adaptive immune system \rightarrow inhibit the generation of INF

Hypothesis:


Modifications of N^{pro} and E^{rns} can be used for rational attenuation of the virus.

Targeted attenuation of BVDV for rational design of an attenuated vaccine virus

p7

E2

BVDV Genome

NS2	NS2-3		NS4B	NS5A	NS5B
		Virulence		ransplacental crossing	Immunity
	Wild-type	+		+	+
	N ^{pro} deletion	-		+	+
	E ^{RNS} deletion	-		+	+
	Bovela®	-		-	+

Meyers G, et al. J Virol. 2007;81:3327

Boehringer Ingelheim

Single mutation: compensation of the missing function from the E^{RNS} and N^{pro}, respectively Double mutation: compensation of E^{RNS}/N^{pro} function not possible

... the vaccine virus passes the placenta?

Experiment:

Intrauterin infection of fetuses with type 1 (KE-9) and type 2 (NY93) double mutant vaccine virus or the respective wt virus at day ~60 of gestation

Type 2:

abortion of all fetuses 23-37 dpi (double mutant and wt virus)

Type 1:

abortion of fetuses inoculated with double mutant vaccine virus all fetuses alive at the end of the experiment when inoculated with wt BVDV virus

Result:

double mutant is inducing abortion post fetal infection \rightarrow no PI animals!

Bovela[®]

modified live bovine viral diarrhoea virus type 1, non-cytopathic parent strain KE-9 and modified live bovine viral diarrhoea virus type 2, non-cytopathic parent strain NY-93

What makes a successful collaboration?

- early academia private partnership
- Communication is key
- Set clear targets \rightarrow define product profile at an early project stage
- Involve the various experts (RA, process development, marketing etc.) at an early stage
- Patience and persistence
- Let your baby go!

Acknowledgement

Gregor Meyers and the FLI team

Knut Elbers

Bryan Charleston and his team Volker Moennig Norbert Tautz Paul Becher

BI team: Axel Lischewski, Sonja Klocke, Martina von Freyburg, and many others ...