

WHAT WILL CAUSE THE NEXT PANDEMIC?

Mark Woolhouse Epidemiology Research Group Centre for Immunity, Infection & Evolution University of Edinburgh, UK

THE INFECTIOUS DISEASE PROBLEM

- A quarter of all deaths; a quarter of all illness
 - "Big Three" = malaria, TB, AIDS
 - HIV/AIDS (since 1980s): 35M deaths, 37M currently infected
- ~1500 different kinds of pathogen
- + Several new ones discovered per year
- Epidemic shocks (mortality, cost)
 - SARS (2003): >900 deaths, more than US\$50 billion
 - Ebola (2014-15): >11,000 deaths, several billion US\$

AFTER EBOLA, WHAT NEXT?

Mark Woolhouse

Epidemiology Research Group Centre for Immunity, Infection & Evolution University of Edinburgh, UK

AFTER ZIKA, WHAT NEXT?

Mark Woolhouse

Epidemiology Research Group Centre for Immunity, Infection & Evolution University of Edinburgh, UK

Zika Virus: What you need to know

Zika is:

- A virus spread through Aedes species mosquito bites. Aedes mosquitoes also spread dengue and chikungunya viruses.
- . A risk to anyone traveling to a region of the world where Zika virus is found.

WHAT WILL CAUSE THE NEXT PANDEMIC?

- Discovery
- Human virus Mammal virus
- Prioritisation
- Response

EMERGING INFECTIOUS DISEASES

- Mostly viruses
 - more than 70% of recently discovered pathogens

- Mostly zoonotic, i.e. shared with other animals
 - more than 70% of recently discovered pathogens

HUMAN RNA VIRUS SURVEY

- Systematic review of primary literature
- Formal methodology
- \rightarrow Taylor *et al.* (2001) *Phil. Trans. B*

- ICTV (2016) classification of "species"
- Catalogue of RNA virus species reported to infect humans

- > 214 recognised species (to 2015)
- 55 genera
- > 21 families (+1 unassigned genus)

RNA VIRUS DISCOVERY

Time: 1901

Mark Woolhouse, University of Edinburgh, January 2018

Thanks to Liam Brierley, Feifei Zhang

RNA VIRUS DISCOVERY

Mark Woolhouse, University of Edinburgh, January 2018

Thanks to Liam Brierley, Feifei Zhang

WT-VIZIONS Wellcome Trust-Viet Nam Initiative on Zoonotic Infections

Several thousand enteric, respiratory and CNS samples from hospitalised patients, high risk cohorts and animals

DISEASES OF UNKNOWN ORIGIN

Mark Woolhouse, University of Edinburgh, January 2018

Thanks to Gail Robertson, Margo Chase-Topping

METAGENOMICS + PHYLOGENETICS

Metagenomics detection

- 2102 faecal samples
 - 1260 human, 842 animal
- >7 billion short reads in total
- Signal detection threshold criteria
- Viruses from 61 genera across 22 families

Mark Woolhouse, University of Edinburgh, January 2018

SCIENTIFIC DATA

Thanks to Carlijn Bogaardt, Al Ivens, Jordan Ashworth, Lu Lu

UNUSUAL PATHOGENS

- Novel **cyclovirus** (CyCV-VN) in CSF from hospital patients
- 2 novel enteric **CRESS-DNA viruses** in hospital patients
- Novel porcine-like **rotavirus** (G26P[19]) in paediatric diarrhoea cases
- First human husavirus infections outside Europe
- First human cases of *Trypanosoma evansi* infection in SE Asia
- Novel **kobuviruses** in bats
- Novel **hunniviruses** in rodents
- Novel *Bartonella* spp in bats
- Novel **bunyavirus** in bats
- Novel **cardiovirus** in rats
- Novel bat and rat **stool-associated viruses**
- Proposed new hepacivirus in bamboo rats

WHAT WILL CAUSE THE NEXT PANDEMIC?

- Discovery
- Human virus Mammal virus
- Prioritisation
- Response

- 188/214 (88%) known human RNA viruses naturally infect other mammals
- Most of the 26 human-specific RNA viruses have close relatives that infect other mammals [except: rubella, hepatitis delta]
- Only 38/214 (18%) infect non-mammals [= birds (37) ± reptiles (7) ± fish (1?)]
- 55/74 (74%) mammal RNA virus genera include human viruses
- 21/23 mammal RNA virus families include human viruses [except: Arteriviridae, Nodaviridae]
- "Majority of human viruses... are the product of host jumping" Kitchen *et al.* (2011) *PNAS*
- Easier to switch host species than alter tissue tropism or transmission route
- Human infectivity evolves very easily within the mammal RNA viruses, less easily from birds and never(?) from anything else

DYNAMICS OF DIVERSITY

- Apparent loss of human RNA virus diversity:
- 73 species ($\geq \frac{1}{3}$ total) not seen (in humans) since 2005

Madrid orthobunyavirus	1961	Orungo virus	1982	Bagaza virus	1996
Ndumu virus	1961	Tacaiuma orthobunyavirus	1983	Equine rhinitis A virus	1996
Rio Bravo virus	1962	New Jersey vesiculovirus	1983	Erbovirus A	1996
Whataroa virus	1964	Maraba vesiculovirus	1984	Alphacoronavirus 1	1997
Wyeomyia orthobunyavirus	1965	Mobala mammarenavirus	1985	Dugbe nairovirus	1998
Banzi virus	1965	Louping ill virus	1985	Vesicular exanthema of swine virus	1998
Patois orthobunyavirus	1967	Changuinola virus	1985	Aroa virus	1998
Guama orthobunyavirus	1967	European bat 1 lyssavirus	1986	Kokobera virus	1998
Foot-and mouth-disease virus	1967	Dhori virus	1987	Omsk hemorrhagic fever virus	1998
Cocal vesiculovirus	1967	Alagoas vesiculovirus	1987	Uganda S virus	1999
Thogoto virus	1969	Semliki Forest virus	1987	Tonate virus	1999
Getah virus	1969	Indiana vesiculovirus	1988	Whitewater Arroyo mammarenavirus	2000
Mokola lyssavirus	1972	Shuni orthobunyavirus	1990	Thiafora nairovirus	2000
Pichindé mammarenavirus	1973	Edge Hill virus	1990	Highlands J virus	2000
Nyando orthobunyavirus	1973	Simian virus 41	1990	Langat virus	2001
Catu orthobunyavirus	1974	Corriparta virus	1990	Una virus	2001
Punta Toro phlebovirus	1974	Gadgets Gully virus	1991	Rotavirus H	2002
Lebombo virus	1975	Mucambo virus	1991	Parainfluenza virus 5	2003
Oriboca orthobunyavirus	1976	Piry vesiculovirus	1993	Chapare mammarenavirus	2004
Uukuniemi phlebovirus	1977	Sabiá mammarenavirus	1994	Candiru phlebovirus	2004
Ntaya virus	1977	Bwamba orthobunyavirus	1994	SARS coronavirus	2004
Everglades virus	1977	Black creek canal hantavirus	1995	Thottapalayam hantavirus	2005
Great Island virus	1978	New York hantavirus	1995	Ilheus virus	2005
Isfahan vesiculovirus	1978	Tai forest ebolavirus	1995	Mammalian orthoreovirus	2005
Evach virus	1980				

Mark Woolhouse, University of Edinburgh, January 2018

updated from Woolhouse et al. (2013) Future Virol.

Mark Woolhouse, University of Edinburgh, January 2018

Mark Woolhouse, University of Edinburgh, January 2018

DIVERSITY OF MAMMAL VIRUSES

- 87M eukaryote virus species Geoghegan & Holmes (2017) R. Soc. Open Biol.
- >5000 species of mammal, 10 each Morse (1993) *Emerging Viruses* \rightarrow 50,000
- Estimated 23 RNA viruses in one population of *Pteropus giganteus* Anthony *et al.* (2013) *mBio* \rightarrow 100,000
- ? Do most mammals have any unique viruses at all? Critical community size
- Humans = 30% global land zoomass
- Livestock = 67%
- Wildlife = 3%
 - Smil (2012) Harvesting the Biosphere

GLOBAL VIROME

Mark Woolhouse, University of Edinburgh, January 2018

www.globalviromeproject.org

(PREDICTIVE) GENOMIC SURVEILLANCE

- Sequence data easy to obtain
- Inferring phenotype from genotype not at all easy to do
- Key trait is cell receptor usage
- Know 78 different receptors from 94 humaninfective viruses (across 19 families)
- Receptor \rightarrow
 - Infectivity
 - Tissue tropism \rightarrow
 - Pathogenicity
 - Transmissibility

Mark Woolhouse, University of Edinburgh, January 2018

Emerging Diseases

Can we identify viruses with pandemic potential?

ark E.J. Woolk ouse and Jordan L. Asheerth (University of Editions), U

here are believed to be thousands of as yet unknown viruses out there; circulating in wildlife nd possibly our domestic animals too. Which of these viruses might have, or might acquire, the obtential to cause the next global pandemic in humans?

over on fair two evolutions of energy stores of energy infections diseases, including swere ac respiratory synchronic (SARS), children and the analysis of the store of the store of the store of the synchronic (SARS), tholes and SAR. Thus explore have two things in common: they were all cau by viruses, and all these viruses originated in ne human nummals or birds.

is world has There have been various attempts to idea of emerging the viruses must likely to emerge in humans were a sole work of the sole of the sole of the sole of the particularly important initiative in the wind ide esceptions: the sole of the sole of the esceptions: the sole of the sole o

and using potential and using potential as wina much hars to pose large-scale threat to human handlik. It has to be also infect humans, it has to cause discose the humans and it has to be able to special from our human to all the start has a start of the start of the human and the start of the start of the start of the discose of the scale types and thusas the trues can whence and unplicate in and thus, in turn, in diversibility in the noiscilar infrastrians between the virus and start cals.

walk active in a proven prove that materials between the second second

Figure 1. Influenza A visos renzy into a susceptible off. Here, Influenza A is entropic susceptible off expressing sink-calif on its surface. Einding of harmoglutarisis to glycoporte embedded in the solar trendmane of Influenza A is uside and promotes the odda angularese at the visos. Transmission diction miorigraph image at #00,000 mage/fluide (R.Durwankik, Wellenzer-Iwage).

Woolhouse & Ashworth (2017) Biochemist

WHAT WILL CAUSE THE NEXT PANDEMIC?

- Discovery
- Human virus Mammal virus
- Prioritisation
- Response

THE VIRUS PYRAMID

LEVEL 2	N = 123	
INFECTION		

LEVEL 1	N 222	
EXPOSURE	N = ? ? ?	

Mark Woolhouse, University of Edinburgh, January 2018

updated from Woolhouse et al. (2014) in One Health

CHANGING LEVELS

SYNOPSIS

Assessing the Epidemic Potential of RNA and DNA Viruses

Mark E.J. Woolhouse, Liam Brierley, Chris McCaffery, Sam Lycett

Many new and emerging RNA and DNA viruses are zoonotic or have zoonotic origins in an animal reservoir that is usually mammalian and sometimes avian. Not all zoonotic viruses are transmissible (directly or by an arthropod vector) between human hosts. Virus genome sequence data provide the best evidence of transmission. Of human transmissible virus, 37 species have so far been restricted to self-limiting outbreaks. These viruses are priorities for surveillance because relatively minor changes in their epidemiologies can potentially lead to major changes in the threat they pose to public health. On the basis of comparisons across all recognized human viruses, we consider the characteristics of these priority viruses and assess the likelihood that they will further emerge in human populations. We also assess the likelihood that a virus that can infect humans but is not capable of transmission (directly or by a vector) between human hosts can acquire that capability.

Aseries of recent emerging infectious disease outbreaks, including the 2014 Ebola virus disease (EVD) epidemic in West Africa and the continuing Zika virus disease epidemic in the Americas, have underlined the need for better understanding of which kinds of pathogens are most likely to emerge and cause disease in human populations. Many, although not all, emerging infectious diseases are caused by viruses, and these frequently emerge from nonhuman host reservoirs (1-3). The enormous diversity (4)and high rates of evolution (5) of viral pathogens discourage attempts to predict with any precision which ones are most likely to emerge in humans. However, there is some consensus, at least in general terms, regarding the kinds of traits that are most essential in determining the capacity of a virus to infect, cause disease, and spread within human populations (Table 1). We focus on one of these traits, the capacity of a virus to spread from one human to another (by any transmission route other than deliberate laboratory exposure), a key determinant of the epidemic potential of a virus

A theoretical framework for studying the dynamics of infectious disease outbreaks is well established (*d*). The capacity of an infectious disease to spread in a host population

Author affiliation: University of Edinburgh, Edinburgh, UK

DOI: http://dx.doi.org/10.3201/eid2212.160123

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 22, No. 12, December 2016

unexposed host population, and its value tells us a great deal about the epidemiology of a pathogen. $R_{o} = 0$ indicates no spread in that population; this value would apply to zoonotic infections that do not spread between humans. R_0 in the range $0 < R_a < 1$ indicates that chains of transmission are possible but that outbreaks will ultimately be self-limiting. R > 1 indicates that major epidemics can occur or that the disease may become endemic in that host population. A higher value of R_o also indicates that a greater reduction in transmission rates must be achieved to control an epidemic (6), R, values have been estimated for >60 common human pathogens (7), including human influenza A virus (R_{a} <2), measles virus ($R_0 \leq 18$), and dengue virus ($R_0 \leq 22$). $R_{\rm o}$ is determined by a combination of pathogen traits, such as its transmission biology, which is itself a complex interplay between the within-host dynamics of the patho-

can be quantified in terms of its basic reproduction number,

 R_0 . R_0 is defined as the average number of secondary cases

generated by a single primary case in a large, previously

metpay oeween the winnerhost dynamics of the pathogen and the host response to infection, and host traits, such as demography, behavior, genetics, and adaptive immunity. Consequently, for any given infectious disease, R_0 can vary between host species and between host populations. Infectious diseases with R_0 close to 1 are a particular concern because small changes in their epidemiologies can lead to major changes in the threat they pose to public health (δ).

 $R_{\rm 0}$ is closely related to another conceptual approach to disease emergence, the pathogen pyramid. There are different versions of this scheme (3,9). We consider a pyramid of 4 levels (Figure 1). Level 1 represents the background chatter of pathogens to which humans are continually or sporadically exposed but most of which are not capable of causing infection. Other levels can be considered in terms of the R_0 of the pathogen in humans: level 2 corresponds to $R_0=0,$ level 3 to $0<\!\!R_0\!\!<\!\!1,$ and level 4 to $R_0\!\!>\!\!1.$

Data and Analysis

Identifying and Characterizing Level 3 and 4 Viruses We updated our previous systematic literature review (10) of the capacity of virus species to transmit between humans (i.e., level 3 and level 4 viruses; online Technical Appendix, http://www.c.dc.gov/EID/article/22/12/16-0123- Techapp1.pdf). Such viruses are

CHANGING LEVELS

Mark Woolhouse, University of Edinburgh, January 2018

Thanks to Lu Lu, Alex Bhattacharya

AN EXAMPLE: ARBOVIRUSES

- 91 human RNA virus species from 8 families are transmitted by vectors
- All 19 level 3/4 RNA arboviruses are carried by anthropophilic vectors
- Main anthropophilic vector species are from 5 dipteran genera:
 - Aedes spp.
 - Anopheles spp.
 - *Culex* spp.
 - *Culicoides* spp.
 - Phlebotomus spp.
- All four Level 4 arboviruses [YFV, DENV, CHIK + ZIKA] are carried by *Aedes* spp.
- There are no anthropophilic ticks: so no Level 4 tick-borne viruses

'LEVEL 3' RNA VIRUS SPECIES

Arenaviruses

(Dandenong*) Guanarito Junin Lassa Lujo (Lymphocytic choriomeningitis) Machupo Sabia

Bunyaviruses

Andes Bwamba Crimean-Congo haemorrhagic fever Oropouche Rift Valley Severe fever with thrombocytopenia syndrome

Coronaviruses Middle East respiratory syndrome

Filoviruses

Bundibugyo ebola Lake Victoria marburg Sudan ebola Zaire ebola

Flaviviruses

(Japanese encephalitis) (Usutu) (West Nile) Zika

Paramyxoviruses

Nipah

Reoviruses (Colorado tick fever) Nelson Bay

Nelson Bay Rotavirus H

Rhabdoviruses Bas-congo* (Rabies)

Togaviruses

Barmah forest Chikungunya O'nyong-nyong Ross river Semliki forest Venezuelan equine encephalitis

N = 28

includes 7 viruses known only through iatrogenic and/or vertical routes (parentheses)
8 with outbreaks >100 cases (bold)

Mark Woolhouse, University of Edinburgh, January 2018

adapted from Woolhouse et al. (2016) Emerg. Infect. Dis.

'LEVEL 3' RNA VIRUS SPECIES

Arenaviruses

Guanarito Junin Lassa Lujo

Machupo Sabia

Bunyaviruses

Andes Bwamba Crimean-Congo haemorrhagic fever Zika Oropouche Rift Valley Para Severe fever with thrombocytopenia Nipal syndrome

Coronaviruses Middle East respiratory

Middle East respiratory syndrome

Filoviruses

Bundibugyo ebola Lake Victoria marburg Sudan ebola Zaire ebola

Flaviviruses

Paramyxoviruses Nipah

Reoviruses

Nelson Bay Rotavirus H

Rhabdoviruses Bas-congo*

Togaviruses Barmah forest **Chikungunya O'nyong-nyong** Ross river Semliki forest Venezuelan equine encephalitis

N = 25

includes 7 viruses known only through iatrogenic and/or vertical routes (parentheses)
5 with outbreaks >100 cases (bold)

*not ICTV recognised

Mark Woolhouse, University of Edinburgh, January 2018

adapted from Woolhouse et al. (2016) Emerg. Infect. Dis.

OUTBREAK DYNAMICS

Woolhouse et al. (2016) Emerg. Inf. Dis.

WHAT WILL CAUSE THE NEXT PANDEMIC?

- Discovery
- Human virus Mammal virus
- Prioritisation
- Response

RESPONSE PRIORITIES

Coalition for Epidemic Preparedness Innovations						
CEPI New vaccines for a safer world	Mission Approach Governance Partners News Calls <u>Resources</u>					
	Priority diseases Regulatory affairs Preliminary Business Plan 2017-2021 Meetings					
	CEPI will initially target the MERS-CoV, Lassa and Nipah viruses, which have known potential to cause serious epidemics. It aims to develop two promising vaccine candidates against each of these diseases, so these are available without delay if and when an outbreak begins. CEPI took the <u>WHO's R&D Blueprint for Action to Prevent Epidemics</u> as its starting point. This contains a list of priority pathogens against which medical countermeasures are urgently needed. CEPI's Scientific Advisory Committee chose these three diseases based on a set of criteria including the public health impact, the risk of an outbreak occurring and the feasibility of vaccine development, based on current knowledge, tools and pipeline candidates.					
•	MERS-CoV					
•	Lassa virus					
•	<u>Nipah virus</u>					
	You can find information about the pipeline dataset for MERS, Lassa and Nipa vaccine candidates here:					

RESPONSE PRIORITIES

LIST OF TOP EMERGING DISEASES

LIKELY TO CAUSE MAJOR

EPIDEMICS

The 2017 list of disease priorities needing urgent R&D attention comprises:

Arenaviral hemorrhagic fevers (including Lassa Fever) Crimean Congo Haemorrhagic Fever (CCHF) Filoviral diseases (including Ebola and Marburg) Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Other coronaviral diseases (such as Severe Acute Respiratory Syndrome, (SARS)) Nipah and related henipaviral diseases Rift Valley Fever (RVF) Severe Fever with Thrombocytopenia Syndrome (SFTS) Zika Disease X

The list will be updated annually or when new diseases emerge

DIAGNOSTICS AND SURVEILLANCE

ADDING VALUE TO DATA

Fig. 2. Projected numbers of cases of EVD in Liberia in 2014 obtained using a branching process model with an ensemble of plausible parameter values. The 95% prediction intervals from 4 July 2014 (yellow shading) are compared with the observed cumulative case numbers (logarithmic scale) over the following 2 months (blue line). The 95% prediction intervals for a model that incorporates estimated levels of underreporting are also shown (blue shading). Reproduced with authors' permission from (*32*).

Woolhouse et al. (2015) Sci. Trans. Med.

OPENNESS AND DATA SHARING

SCIENCE	sciencemag.org
---------	----------------

14 OCTOBER 2016 • VOL 354 ISSUE 6309

INFLUENZA

Role for migratory wild birds in the global spread of avian influenza H5N8

The Global Consortium for H5N8 and Related Influenza Viruses*+

gaactcag aaaaacagtt tattttett CCAGGCtGG tgtgcaatgg tgcagtcata gtggttete ceaceteage etecetagta getgaganta ggctagttt cttttattt ttgtatagat ggggtettgt asttoctg gtotcaagtg atoctoccac etcospecter pa

CA010110025 VRC160025 09/09/2009 05/06/2009 NA CA010210035 VRC160035 02/07/2008

12/02/2008 NA

213

ACKNOWLEDGEMENTS

Kyle Adair, Rustom Antia (EMORY), Jordan Ashworth, Alex Bhattacharya, Carlijn Bogaardt, John Brownstein (HARVARD), Liam Brierley, Liam Carr, Margo Chase-Topping, Sarah Cleaveland (GLASGOW), Peter Daszak (EHA), Chris Dye (WHO), Ben Evans, Eric Fèvre, Elly Gaunt, Sonya Gowtage-Sequeira, Dan Haydon (GLASGOW), Richard Howey, Zoe Hudson, Paul Kellam (SANGER), Sophia Latham, Lu Lu, Samantha Lycett, Chris McCaffery, David McCulloch, Nick Montgomery, Cristina Morena, Conor O'Halloran, Kevin Olival (EHA), Andrew Rambaut, Liam Reilly, Gail Robertson, Julie Robertson, Nora Schmit, Fiona Scott, Peter Simmonds, Donald Smith, Claire Taylor, Louise Taylor, Alex Wallace, Nicola Wardrop, Catriona Waugh, Nathan Wolfe (METABIOTA), Feifei Zhang

+ Foresight and IOM/NAS committees

FUNDING: Wellcome Trust, BBSRC, DEFRA/SFC, NIHR, USAID, Darwin Trust

TACKLING INFECTIONS TO BENEFIT AFRICA

A partnership between:

University of Edinburgh, UK University of Botswana University of Ghana KEMRI-WT, Kenya University of Rwanda University of Kwazulu-Natal, South Africa University of Khartoum, Sudan NIMR, Tanzania COCTU, Uganda University of Zimbabwe

NHS National Institute for Health Research

www.tiba-partnership.org