A bovine alveolus model to replace cattle in the study of host-pathogen interactions in bovine tuberculosis

Diane Lee
School of Veterinary Medicine
University of Surrey, UK

- Mycobacterium bovis can infect almost all warm-blooded animals
- 1900
- 40% of British cattle suspected to be infected
- M. bovis responsible for $\sim 15 \%$ of all human deaths from TB
- 1950s
- Pasteurisation of milk and 'test-and-slaughter' introduced
- 1970s
-0.22% of tests positive for bTB
- 2016:
- ~5\%

Proportion of existing cattle herds infected with or positive for M. bovis country based-data, 2012. EFSA Journal 2014

Bovine tuberculosis (bTB)

Financial Year
The Strategy for achieving Officially Bovine Tuberculosis Free status for England - 2014 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/300447/pb14088-bovine-tb-strategy140328.pdf
https://www.gov.uk/government/news/tb-strategy-ahead-of-schedule-as-england-set-to-apply-for-officially-tb-free-status-for-half-the-country "Dealing with Bovine TB in England ... required the culling of 28,000 cattle in 2015"

National Centre
for the Replacement
Refinement \& Reduction
of Animals in Research
Login | Register in y f fivin
Search this site $\quad \mathbf{Q}$

1 The 3Rs Our science Our resources Funding News \& Blogs Events About us

Home > Funding > Our funding schemes > Strategic awards > Replacing animal models of bovine tuberculosis

Our funding schemes	Replacing animal models of bovine
tuberculosis	
Project grants	This call is closed.
Pilot study grants Focus PhD studentships The current UK bovine tuberculosis (bTB) epidemic is one of the biggest challenges facing cattle farming in the UK with very serious economic and animal welfare consequences. The disease has spread from isolated pockets in the 1980s to cover large areas of the west and southwest of Britain, illustrating its increasing incidence.David sainsbury\quadFellowships	

- Strategic award between NC3Rs and Defra (2015)
- Replace cattle for the study of the pathogenesis of bTB by providing a tissue culture model with which to study fundamental events following infection of the bovine lung with virulent mycobacteria that can't be conducted currently in vitro
- Using human lung epithelium-endothelium submerged bilayer models:
- Epithelial cells are hosts for M. tuberculosis and allow virulent bacteria to access the deeper tissues - Birkness (1999)
- Peripheral blood mononuclear cells (PBMCs) migrate from the basal layer to the apical layer during infection
- Airway epithelial cells play an essential role in both innate and adaptive immune responses against M. tuberculosis - PRR expression
- A bilayer of human pulmonary artery endothelial cells and human alveolar epithelial cells at an air-liquid interface on opposing sides of a Transwell developed to study invasive pulmonary aspergillosis
- Professor William Hope, University of Liverpool (NCR3Rs grant, G0700599)
- Objective 1
- Isolate and immortalise bovine type II alveolar epithelial (B2AE) cell line
- Objective 2
- Assemble a bovine alveolus (boAlv) culture model using bovine cells (adaptation of the Hope model)
- Objective 3
- Demonstrate functional utility of the boAlv model by introducing PBMCs from cows expressing a strong or weak vaccine protection phenotype (VPP)
- Objective 1
- Isolate and immortalise bovine type II alveolar epithelial (B2AE) cell line
- Objective 2
- Assemble a bovine alveolus (boAlv) bilayer culture model using bovine cells (adaptation of the Hope model)
- Objective 3
- Demonstrate functional utility of the boAlv model by introducing PBMCs from cows expressing a strong or weak vaccine protection phenotype (VPP)

Objective 1 - Isolate and immortalise bovine type II alveolar epithelial (B2AE) cell line

(Elastase/collagenase/Trypsin/DNAse I)

strained cells
YYYYYYYYYYYYY

Objective 1 (i) Devise and implement an isolation strategy results 1

Day 1 post-isolation

Objective 1 (i) Devise and implement an isolation strategy results 2

Objective 1 (i) Devise and implement an isolation strategy results 3

Objective 1 (i) Devise and implement an isolation strategy results 4 - ALI cultures

5 days on MG-coated Transwell-Clear 12 mm inserts; p5

Objective 1 (i) Devise and implement an isolation strategy results 5-3D ECM

10 days in 3D MG, submerged in SAGM; 10 x , p6

Objective 1 (ii) Immortalise isolated cells using Bmi1 and hTERT lentiviral constructs

Objective 1 (ii) Immortalise isolated cells using Bmi1 and hTERT lentiviral constructs

Co-transfect 293FT producer cell line with expression construct and packaging mix

Harvest viral supernatant and determine titre

Transduce mammalian cells and select for clones

Objective 1 (ii) Immortalize isolated cells using Bmi1 and hTERT lentiviral constructs - Verification of expression clones

Criteria		Status
Digest of expression construct	(At miniprep and midiprep stages)	Digest verified at both stages
Sequencing (external)	(CMV and V5 C-term)	Sequence verified using diagnostic PCR and Sanger sequencing
Sequencing (internal)	(two sets of primers designed for hTERT)	Sequence verified using diagnostic PCR and Sanger sequencing
Blasticidin selection	(at titration and transduction stage)	Titrations obtained for both lentiviral preparations: $>2 \times 10^{7}$ TU/mL

Objective 2 - Assemble a bovine alveolus (boAlv) bilayer culture model using bovine cells

Objective 2 - Assemble the boAlv culture model

BPAEC bovine endothelial cells seeded onto an inverted Transwell

Basolateral chamber - endothelial cells

Objective 2 - Assemble the boAlv culture model - Results 1

www.surrey.ac.uk

Objective 2 - Assemble the boAlv culture model - Results 2

- Perform fresh isolation of ATII cells from bovine lung and immortalise (B2AE cell line)
- Characterize clones in parallel with WT ATII
- Bmi1/hTERT expression (qRT-PCR, WB)
- Growth curve
- Karyotype
- ATII markers SP-B, SP-C, TFF1, CK18, CD74 (qRT-PCR and/or IF)
- Optimise bilayer model
- seeding densities
- culture period

Ongoing and future work:
(Objective 3 - Demonstrate functional utility of the model)

- Evaluate at least 4 possible scenarios associated with vaccine protection, related to the speed and activity of the host response and the pathogen behaviour within the alveolus:
- PBMCs from strong VPP animals restrict better the growth of mycobacteria;
- PBMCs from strong VPP animals restrict better the migration of mycobacteria through the epithelium -> endothelium;
- PBMCs from strong VPP animals migrate more efficiently and in greater numbers through the endothelium->epithelium;
- PBMCs from strong VPP animals express and stimulate a greater ratio of IL-22/17

Prof. Mark Chambers
Dr Javier Salguero-Bodes
Prof. Graham Stewart
Prof. Martin Vordermeier

Ms Abbe Martyn
Mr John Cooper

Ms Ella May
Mr Duncan Grainger
Mrs Gillian Wallis

Prof. William Hope
Ms Clara Negri
for Environment
Food \& Rural Affairs

Su, F et al. (2013) Establishment and evalutation of a stable cattle type II alveolar epithelial cell line. PLoS ONE 2013, 8 (9): e76036

Mao, P et al. (2015) Human alveolar type II cells in primary culture. Physiol Reports 2015, 3 (2): e12288

Lee, J-H et al. (2013) Surfactant protein-C chromatin-bound green fluorescence protein reporter mice reveal heterogeneity of surfactant protein-C expressin lung cells. Am J Respir Cell Mol Biol 2013, 48 (3):288-298

Fulcher, L et al. (2009) Novel human bronchial epithelial cell lines for cystic fibrosis research. Am J Physiol Lung Cell Mol Physiol 2009, 296:L82-91

Cudré-Mauroux C et al. (2003) Lentivector-mediated transfer of Bmi-1 and telomerase in muscle satellite cells yields a duchenne myoblast cell line with longterm genotypic and phenotypic stability. Hum Gene Ther. 2003, Nov 1;14(16):152533

