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• Case study: Foot & Mouth Disease



What is a mathematical model?

Model (Definition):

• A representation of a system that allows for 

– investigation of the properties of the system 

– and, in some cases, prediction of future outcomes.

• Always requires simplification

Mathematical model:

• Uses mathematical equations to describe a system



Why do we need (mathematical) models?

• They provide a framework for conceptualizing our ideas 

about the behaviour of a particular system

• They allow us to find structure in complex systems & to 

investigate how different components (e.g. host –

pathogen) interact

• Models can play an important role in informing policies:

– By providing understanding about key components 

and their interactions for a complex phenomenon

– By predicting the future 



Why mathematics?

• Mathematics is a precise language

– Forces us to formulate concrete ideas and assumptions in an 

unambiguous way

• Mathematics is a concise language

– One equation says more than 1000 words

• Mathematics is a universal language

– Same mathematical techniques can be applied over a range of scales

• Mathematics is an old but still trendy language

– The rich toolbox created by mathematicians over centuries is available at 

our disposal

• Mathematics is the language that computers understand best

http://quotesgram.com/galileo-quotes-on-god/


Mathematical models are not bound by physical 

constraints

• Mathematical equations can handle all types of interactions 

between different system components

• Powerful tool to explore ‘what if scenarios’

• Extremely useful in the context of infectious disease where 

experimental constraints are strong

https://liawbudisequislife.wordpress.com/2012/02/07/sky-is-the-limit/


Limitations of mathematical models

1. Lack of quantifiable knowledge 

– Models that encompass mechanisms (e.g. infection process) require 

quantitative understanding of these mechanisms in order to make reliable 

predictions

2. Lack of available data / methods for estimating model parameters

– E.g. how to estimate e.g. transmission rate from field data?

– Much improvement to be expected over the next years due to recent 

advances in statistical inference and data explosion

3. Inherent stochasticity of the biological system

– Infection is a stochastic process

– It is impossible to make accurate predictions for infection spread on the 

individual herd level

http://rebootauthentic.com/whats-your-magic-wand/


Classification of mathematical models

• Mathematical models come in all shapes & sizes

• Classifying them into broad categories can tell you much about their purpose 

& scope and often require different mathematical techniques 

• Typical distinctions:

– Empirical vs mechanistic 

– Deterministic vs. stochastic

– Systems vs molecular model

– Static vs dynamic

– Linear vs non-linear

– Discrete vs. continuous

All mathematical models 

consist of variables and 

parameters, and a 

mathematical description of 

the relationship between them  



Empirical vs mechanistic models

• Empirical  Models

• Data driven modelling approach

• Starting point: data obtained from empirical studies

• Aim:  to determine patterns & relationships between data 

• Require no prior knowledge of the underlying biology

• Tools: statistics, bio-informatics, machine / deep learning

• Mechanistic Models (also called Process Based Models):

• Hypothesis driven modelling approach

• Starting point: specific phenomena of interest – observed from data

• Aim: to provide understanding for underlying mechanisms; to predict 

• Require prior understanding of system 

• Data are used to parameterise / validate the model

• Tools: mathematical dynamic systems theory, simulations



What is a simulation model?

• Simulation models are not specific types of 

mathematical models

• The term ‘simulation model’ refers to the process of 

implementing mathematical model, i.e. via computer 

simulations

• Simulation models usually simulate the process of data 

generation assuming the model was true

– E.g. epidemiological simulation models 

• simulate disease spread in a population

• Generate (simulated) data of disease prevalence 

over time

http://medprof.org.ua/epidemija-gripu-2015-2016-rokiv/


The 4 stages of modelling

4. Apply

2.Generate 

predictions 

& Analyse

3. Validate
1. Build

Similar process as for conducting a 

biological experiment:

1. Design the experiment

2. Generate & analyse data

3. Validate findings

4. Apply results in practice

Modelling is more flexible but can 

be much more elaborate

http://bindikmas.kemdikbud.go.id/nilem/?menu=pros
http://rookiercflyer.com/applying-rc-model-aircraft-decals
http://ieltsforfree.com/analysing-ielts-task-2-writing-questions/


What makes a good mathematical model?

– Fit for purpose

– Verifiable

– As simple as possible, but sufficiently 

complex to adequately represent the real 

system without obstructing understanding

– Appropriate balance between accuracy, 

transparency and flexibility

Everything should 

be made as simple 

as possible, but 

not simpler

http://www.slideshare.net/leifos/modelling-search-interaction-with-economic-models
http://cooldigital.photography/most-inspirational-wallpapers-backgrounds/


Modelling vaccine 
response



Modelling vaccine response

• Host-pathogen interaction models

– Within host

– Models immune response & impact of 

vaccines on it

– Useful for identifying vaccine targets

• Epidemiological models

– Between hosts

– Model spread of infection between individuals 

/ herds & vaccine effectiveness

– Useful for assessing vaccination strategies

Go et al. 2018

http://medprof.org.ua/epidemija-gripu-2015-2016-rokiv/


Epidemiological models



What questions should the model answer?

• What is the risk of an outbreak to occur?

• How severe will it be? 

– What proportion of the population will become infected?

– What proportion will die?

• How long will it last?

• Are all individuals at risk of becoming infected?

• How far will it spread?

• What impact does a particular intervention (e.g. vaccine) have 

on these characteristics?



The basic reproductive ratio R0

• R0 is a key epidemiological measure 

for how “infectious” a disease is

• R0 = 1 is a threshold between epidemic / no epidemic

• R0 > 1: Disease can invade

• R0 < 1: Disease will die out

Definition: Basic reproductive ratio R0

The average number of individuals that an infectious individual is expected 

to infect, assuming that the rest of the population is susceptible



The basic reproductive ratio R0

• R0 is a key epidemiological measure 

for how “infectious” a disease is

• E.g. R0 = 2 (Contagion)

1 billion
Repeat 30 times

1 

infected

2 

infected

4 

infected

8 

infected

16

infected

In Contagion, Dr. Erin 

Mears (Kate Winslet) 

explains R0

http://www.examiner.com/article/ebola-explained-with-kate-winslet-r0-scene-contagion
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Examples for R0 estimates for livestock diseases

BSE
0 ≤ 𝑅0 ≤ 14

Scrapie 1.6 ≤ 𝑅0 ≤ 3.9

Foot & 

Mouth 

Disease

1.6 ≤ 𝑅0 ≤ 4.6

http://www.healthline.com/health/r-nought-reproduction-number
http://www.clipartof.com/portfolio/colematt/cow/2


The compartmental SIR epidemic model without demography

• X = nr of susceptibles, Y = nr of infectives, Z = nr of recovered

• Describes acute infections transmitted by infected individuals;

• Pathogen causes illness for a period of time followed by death or 

life-long immunity

Susceptibles Infectives Recovered

/ Removed 

S I R
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Transition between the states is defined by:

• The rate at which susceptible individuals get infected (S→I) 

• The rate at which infected individuals recover (or die) (I→R)

This gives rise to 2 model parameters: 

• The transmission term β (= contact rate x transmission probability)

• The recovery rate γ

Susceptibles Infectives Recovered

/ Removed 

S I R
β γ

The compartmental SIR epidemic model without demography
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R0 for the SIR epidemic model

Susceptibles Infectives Recovered

/ Removed 

S I R
β γ

• An average infected individual 

– is infectious for a period of 1/γ days

– infects β susceptible individuals per day

– will thus generate β x 1/γ new infections over its lifetime

𝑅0 = 
𝛽

𝛾
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The SIR model without demography

Model equations

The model cannot be solved analytically, i.e. no analytical expression 

for S(t), I(t), R(t)

• Need computer programme

𝒅𝑺

𝒅𝒕
= −𝜷 𝑺 𝑰

𝒅𝑰

𝒅𝒕
= 𝜷 𝑺 𝑰 − 𝜸𝑰

𝒅𝑹

𝒅𝒕
= 𝜸𝑰

Model inputs: 
• Values for 𝜷 and 𝜸
• Initial conditions

S(t=0), I(t=0), R(t=0)
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The threshold phenomenon

Imagine a scenario where  I0 infectious individuals are introduced into a 
susceptible population.

Will there be an epidemic?

One can prove mathematically that the infection can only invade if

• R0>1

• The initial proportion of susceptibles 𝑆0 exceeds ൗ
𝛾
𝛽 = ൗ1 𝑅0

– Implications for successful vaccination: not everybody needs to be 
vaccinated



Epidemic burnout

Imagine a scenario where the infection can invade a population

What happens in the long-term?

What proportion of the population will contract the infection?

One can show mathematically:

• The epidemic eventually burns out  (I = 0)

• Not all susceptibles will become infected

• There is a relationship between the final size 

𝑺 ∞ of the epidemic and R0:

Basic reproductive ratio, R0
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Dynamic behaviour

• All epidemic profiles have 

the same shape 

characteristics

• The specific profile shape 

depend on the model 

parameters and on the 

initial conditions S(0), I(0), 

R(0)

β
γ
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The SIR model with demography

• Assume the epidemic progresses at a slower time scale so that the 

assumption of a closed population is no longer valid 

• Assume constant replenishment rate / removal rate = μ

𝑹𝟎 =
𝜷

𝜸 + 𝝁

𝑅0 is smaller than for a 

closed population

➢ Epidemics are less likely



What will happen in the long-term?

2 potential outcomes: 

( S*, I*, R*) = (1, 0, 0)                                            Disease free

( S*, I*, R*) = 
1

𝑅0
,
𝜇

𝛽
𝑅0 − 1 , 1 −

1

𝑅0
−

𝜇

𝛽
𝑅0 − 1 Disease persists

Which outcome will be achieved?

If an infection can invade 

(i.e. if R0 > 1) , then the 

topping up of the 

susceptible pool causes the 

disease to persist



Dynamic behaviour: open vs closed herds

Disease 

persists

Lower 

seroprevalence 

in open herds

Little difference at 

the early stages of 

an outbreak



Modelling the impact of vaccination 

on epidemics



How may vaccines affect the epidemics?

S I R
γβ

• Vaccines may affect the individual

• Risk of becoming infected (susceptibility): impact on β

• Risk of transmitting the infection when infected (infectivity): impact on β

• Duration of infectious period: 1/γ
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The most simple epidemiological vaccination model 

Sn

Sv

I R
γI

βSnI

ε∙βSvI

• Assume a closed population

• A proportion p are vaccinated with a vaccine with efficacy ε

NB: This model could be valid even in the context of mass 

vaccination (e.g. if some individuals are ‘immune’ to the vaccine)



The threshold phenomenon 

in a vaccinated population

Assume I0 infectives are introduced into this population

Will there be an epidemic?
Effective reproductive ratio in a vaccinated population:

𝑹𝟎
v = 𝒑 𝟏 − 𝜺 𝑹𝟎+ 𝟏 − 𝒑 𝑹𝟎 ≤ 𝑹𝟎

Epidemic will not occur  if 𝑅0
v < 1 

This is the case if the proportion of vaccinated individuals pc exceeds 

𝒑𝒄 <
𝟏

𝜺
(𝟏 −

𝟏

𝑹
𝟎

)



Interdependence between vaccine efficacy & vaccine coverage 

• More virulent diseases (higher R0) 

require better vaccines and 

higher vaccine coverage

• The critical proportion of 

vaccinated decreases non-linearly 

with vaccine efficacy ε

Criteria for preventing an outbreak in a farm 

where vaccination is applied

No 

outbreak

Outbreak

Bitsouni et al. 2018



Impact of vaccination on epidemiological characteristics

• Vaccines with higher 

efficacy generate less 

severe outbreaks

• Peak prevalence 

occurs later

Bitsouni et al. 2018



Moving closer to reality



Vaccine effectiveness: 
Reduction in disease prevalence

under vaccination vs. non-vaccination

Vaccine properties: 

• Efficacy

• Immunogenicity

• Safety

Vaccine administration:

• Vaccine coverage

• Timing & frequency 

• Prophylactic or re-active

Herd management & 

demography
• Farm structure

• Replacement rate

• Biosecurity

• Co-infections & treatments

Host / pathogen 

characteristics
Heterogeneity in host 

susceptibility due to

• Age

• Genetics

• Spatial structure

Factors affecting vaccine effectiveness in the field

Environmental 

effects
• season



Vaccine effectiveness

• How much is disease 

prevalence reduced?

• For how long?

Predicting the duration of vaccine effectiveness

Vaccine properties: 

• Efficacy

• Immunogenicity

• Safety

Vaccine administration:

• Vaccine coverage

• Timing & frequency 

• Prophylactic or re-active

Pathogen 

characteristics

• Genetic heterogeneity

• Evolutionary rate

Demography
• Farm structure

• Replacement rate

• Biosecurity

• Co-infections & treatments

Environmental 

effects
• season

Mathematical models are the only way to 

determine how different factors together affect 

the degree & duration of vaccine effectiveness



WP16: Predicting vaccine 

effectiveness in the field

1. Establish epidemiological & evolutionary risk 

factors of SAPHIR vaccines 

2. Develop a mathematical model to investigate 

epidemiological & evolutionary consequences 

of vaccination 

• Parameterize for attenuated PRRS vaccine 

3. Determine vaccination strategies to maximise 

vaccine effectiveness in short & long-term

Courtesy 

S.Lycett



Porcine Reproductive & Respiratory Syndrome - PRRS

• Endemic viral disease, causes  dramatic losses 
to the pig industry worldwide

• Symptoms: 
– Reproductive failure in mature pigs

– Respiratory problems, fever, weight loss, death in 
growing pigs

• Arterivirus, 2 broad genotypes
– High strain diversity within each genotype

– Evolves incredibly fast

Courtesy 

S.Lycett



PRRS vaccines

Killed vaccines

• Very poor cross-protection

• Reduce severity of infection

– Reduced virus load, faster recovery

• Safe

Modified life vaccines

• Better (but not perfect) cross-protection

• Reduce severity of infection

• Safe???



Modelling questions

1. What level of cross-protection & immunogenicity 

is required for a vaccine to prevent a PRRS 

outbreak in a herd?

2. How does this depend on the vaccination 

strategy?



Modelling approach

Deterministic SIR model, adapted to PRRS

• Use parameter values from literature estimates (w.o. vaccination)

• Implement vaccine characteristics

– Efficacy, immunogenicity

• Model different vaccination strategies

– Prophylactic vs reactive

– Continuous vs one-off

– With / without additional biosecurity



Bitsouni et al. 2018



What level of efficacy / immunogenicity is required for 

preventing a PRRS outbreak?

Assumptions: 

• continuous prophylactic mass 

vaccination

• full coverage

• Even (highly) imperfect 

vaccines can prevent a PRRS 

outbreak

• 50% efficacy, when 

combined with 

immunogenicity is sufficient

No 

outbreak

Outbreak



Reactive vaccination – a matter of timing

• Reactive vaccination can 

substantially reduce 

PRRS prevalence

• The earlier the better!



Epidemiological models 
as decision making tools



Case study: Foot & Mouth Disease (FMD)

2001 FMD crisis in UK:

– Led to the killing of over 10 million sheep & cattle

– Cost ~£20bn

• Problem: Rapid transmission between wide range of 

livestock species

• Infection is rarely fatal, but causes severe reduction in 

growth rate and in milk production (dairy cattle)

• Strong economic impact: export ban of milk and meat, 

and movement restrictions in affected farms 

http://www.nadis.org.uk/bulletins/foot-and-mouth-disease.aspx


Epidemiological models & policy decisions

• Several control options available: 

– Culling, vaccination (prophylactic / reactive / targeted / predicted), 

prolonged movement & export restrictions …

• Main policy aim: achieve disease-free status asap

• Trade-off: minimize time vs minimize disturbance

– Difficult to achieve optimal balance without a quantitative predictive 

framework

• “Scientific policy approach”: Appointment of Prof. Roy Anderson, leading 

epidemiological modeler

➢ 3 epidemiological models for FMD were developed to inform policy 

decisions



Why 3 FMD models?

• Essential differences between the 3 FMD models

– Modelling approach (deterministic / stochastic)

– Complexity (e.g. accurate representation of spatial structure)

– Scope

– Purpose

– Transparency, flexibility, runtime 

• Models agreed in their main predictions:

– Successful control of FMD requires rigorous application of 

culling (combined with vaccination) on a wide scale



Stakeholder reactions

• Policy makers: application of stringent culling

– UK reverted to FMD free status within a few months

• Farmers & Veterinarians:

http://www.shutterstock.com/pic-127446614/stock-vector-illustration-of-cartoon-farmer-angry.html
http://www.canstockphoto.com/scientist-being-angry-15760170.html


Resolving the conflict (Keeling 2005):

The issue of scale

• Optimum approach & control strategy depends on the scale:

• Individual farm level / local scale: 

– Veterinary judgement is most accurate / suitable

– Less stringent control measure is optimal

• National level / global scale:

– Mathematical model best suited to weigh pros & cons

– More stringent control measure is optimal

Keeling Proc R Soc B 2005

http://jittdl.physics.iupui.edu/jitt/sampler/physics/physics_archive/puzzle-2.html
http://www.bbc.co.uk/bitesize/ks3/science/environment_earth_universe/astronomy_space/revision/3/


Conclusions

• Mathematical models can help decision making when faced 

with complex problems, such as predicting vaccine effectiveness

• There is not one best model: Different models provide different 

insights

• All models require simplification 

• Mathematical models can cause friction between modellers / 

veterinarians / farmers / experimental scientists

• Effective communication is key for effective modelling





The Cambridge – Edinburgh FMD Model

• Stochastic simulation model

• Takes spatial structure of farms into account

• Less explicit representation of temporal aspects

• Simplified representation of transmission dynamics

– Farm-level transmission dynamics

Keeling et al., 2001 & 2003; 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwjjgtvW8NbMAhUF2xoKHdRmDHgQjRwIBw&url=http://www.gov.scot/Publications/2014/06/3709/3&psig=AFQjCNGb_F3aXtH9WsN17OER16jAi3EY3A&ust=1463222941155826


Investigation of vaccination strategies with the 

Cambridge – Edinburgh model

Scenarios considered: Vaccination, combined with diverse 

culling strategies & movement restrictions

Prophylactic vaccination

– Dependency on coverage, efficacy, random / targeted 

vaccination

• Reactive vaccination

– Mass vaccination

– Ring vaccination

– Predictive vaccination



Prophylactic vaccination

Keeling et al. 2003 

1. Prophylactic vaccination can be 

more effective than extensive 

culling, 
• but only if vaccine coverage is high

2. Vaccine effectiveness depends on 

other control strategies applied

3. Vaccination of cattle may be 

sufficient, if combined with cull
• Little benefits from vaccinating all 

animal species

No vaccination



Reactive vaccination

Keeling et al., 2003 

The effectiveness of reactive 

vaccination depends (non-

linearly) on how many cattle 

can be vaccinated per day

• Low coverage is not enough

Vaccine+

Localized 

culling

Vaccine + 

Wider

culling

No vaccination





The vaccine developer’s question:

How can we make vaccines to make 

animals more disease resistant?

The stakeholder’s question:

How can vaccines help to reduce 

infectious disease risk & prevalence?

• How will vaccination affect the 

pathogen landscape?



Deterministic vs stochastic models

Deterministic models

– Assume that the outcome is precisely determined 

by the model inputs and relationships 

– Ignore all random variation

– A given input always produces the same output

Stochastic models

– Incorporate inherent randomness of system

– E.g. infection is a chance event that occurs at a 

certain probability

– The same input produces an ensemble of 

outputs



Why & when do we need stochastic models for 

modelling epidemics

• Stochasticity is particularly important when the number of 

infectious individuals is small

1. At the early stage, when disease is invading 

→ Probability of an outbreak to occur

2. During a trough phase of an epidemic cycle 

→ Probability of extinction

3. When population size is small

→Chance fluctuations cause extinction

http://rsif.royalsocietypublishing.org/content/10/88/20130643


Classification according to the scale of modelling

• National

• Herd

• Individual

• Organ

• Cell
• Molecules

• Genes

The appropriate scale for modelling depends on the 

model objectives

Mechanistic models often combine 2 or 

more adjacent levels of the hierarchy

Systems models combine several 

levels of the hierarchy

See lecture on within host infection 

dynamics: (molecules → cell → organ)

https://en.wikipedia.org/wiki/Epidemiology_of_tuberculosis
http://thedailycannibal.com/2012/06/27/political-science/flock-of-sheep/
http://biology.usf.edu/cmmb/undergrad/bio/
http://www.wisegeek.org/what-is-a-polar-molecule.htm


Herd immunity for a fully protective vaccine

𝑹𝟎
v = (𝟏 − 𝒑) 𝑹𝟎

𝒑𝒄 = 𝟏 −
𝟏

𝑹𝟎

Critical proportion of individuals to 

be vaccinated: 

In order to eradicate an infection, not 

all individuals need to be vaccinated 

(“Herd immunity”)



Insights: Cambridge-Edinburgh FMD model

– Mass prophylactic vaccination can effectively prevent 

major epidemics

• More efficient if high-risk farms are targeted

– Reactive vaccination, when combined with wide-spread 

culling can effectively control ongoing epidemics 

• Can be optimised by targeted / predictive vaccination 

– Limitations:

• ‘Idealized’ conditions (e.g. mass vaccination, high efficacy,…)

• No consideration of strain diversity & evolutionary risk




