

Immunological Toolbox Euro VetVacc Workshop 22/05/2018

John Hammond & William Mwangi

The Pirbright Institute receives strategic funding from BBSRC.

Introduction and background

Two meetings in 2015/2016 highlighted the continued importance of reagent development for veterinary species and the unsuitability of short term funding streams for sustained efforts.

Roslin and Pirbright were encouraged to fund toolbox activities through their Core Capability Grants.

Bids were successful and Roslin and Pirbright are working on a joint effort to coordinate and develop immune reagents.

The nature of CCG funding makes it imperative that we demonstrate wider support for research.

What is the immunological toolbox?

"Remove barriers to VetVacc research"

Three parts:

- 1. Pirbright CCG funded activities to sequence our antibody repository and manufacture recombinant antibodies
- 2. Roslin to generate new antibodies
- 3. GCRF funded website linked to the above as a source of information- as broad as possible
- 4. An international effort to consolidate all activities both past and present as part of the above

Two steering group meetings and two workshops held already

21-22nd August 2017

Two day international workshop at Pirbright focussed on previous efforts and priorities for sustainable funding

Agreed that many international efforts could be coordinated and sustainable funding focussed on the toolbox website

17th January 2018

One day workshop at Stirling- focussed on specific priorities and future funding (leveraged by current activities)

Updated Priorities

Secure current antibodies through sequencing

Create and maintain a website of available reagents and associated data (more later).

• Facilitate information exchange and collaboration

Generate new antibodies based on community demand.

- Agreed priorities were T cell subset markers and B cell subset markers.
- Both antibodies against new antigens and recombinant antibodies

Facilitate screening of uncharacterised hybridomas

The immunological toolbox activities at Pirbright: recombinant antibodies

To translate our current hybridoma stocks into transfectable gene blocks. Build in the option of class switching, catalogue current stocks

- Sequencing and expression
- Making Fab fragments
- Class switching
- Species switching; mouse-bovine, mouse-chicken or mouse-pig hybrids.
- Scale up of products from above protocols to milligrams quantities

Benefits of recombinant antibodies

- Secure reagents for the future as they will exist as sequences
- Reliable, long-term supply (rAbs antibodies are not susceptible to cell-line drift)
- Reduce cost of LN storage (not getting rid of all the vials!)
- Flexibility in production methods to potentially reduce cost or increase scale of manufacturing
- Make these antibodies simple to share without shipping cells or even supernatant
- Open the possibility of engineering antibodies to better suit research needs
- Consistent performance across lots (many hybridomas are not monoclonal)
- Highly specific and sensitive antibodies (no lot-to-lot variation, thus allowing for peak specificity and performance)

Benefits of recombinant antibodies

- Lack of an Fc effector functionality (e.g. Fabs to eliminate both cellular responses against the target)
- Flexible labelling and purification options, e.g. rAbs containing a Sortase recognition motif (LPXTG) to covalently add fluorophores, enzymatic substrates (HRP, AP...etc), in a directed and reproducible manner
- Or 6xHis tag (for nickel-based purification systems) and an avidin tag sequence for enzymatic biotin conjugation using the biotin ligase, BirA.

Our recombinant antibody pipeline

Collaboration with Prof Ray Owens & Dr Jo Nettleship at OPPF

Validated a sequencing protocol at Pirbright for mouse hybridomas, cattle heterohybridomas and cattle B cells

Vector backbone designed for cattle and mouse to allow ligation of commercially generated antibody gene blocks

This allows the following

- Sequencing mAbs ✓
- Making Fab fragments from rAbs ✓

Transfection and purification validated at OPPF

Scaling up rAbs ✓

Recombinant antibody pipeline

96 well expression analysis

Protein production

Gr13.1 recombinant mAb

Anti-RSV recombinant mAbs

RSV ELISA

Anti FMDV SAT mAbs

Predicted differences in binding patterns based on sequence information

 Cryo-electron microscopy of the Fabs bound to FMDV capsids confirmed differences in binding pattern

Antibody structure

IgG H Chain Subclasses

lgY

Chicken

Human		γ1	γ2	γ3	γ4		
	Complement fixation	weak	weak	strong	no		
	Fc receptor binding	strong	weak	strong	weak		
	Placental transfer	strong	weak	strong	strong		
Mouse		γ1 (46 %)	(γ2a(24%)	γ2b(27%)	γ3(2%)		
Bovine		γ1	γ2	Y3			
Porcine		(γ1)	γ 3	γ5.1	γ5.2	γ6.1	γ6.2

L chain usage

The ratio of kappa to lambda found in the Ig population varies by species

Species	% k	%λ
Mouse	99	1
Rat	99	1
Rabbit	90	10
Human	67	33
Pig	(50)	<u>(50</u>)
Goat	1	99
Sheep	1	99
Bovine	1	(99)
Horse	1	99
Chicken		up to 95?

Make Mouse k; Pig k and λ ; Bovine λ ; Chicken λ

Antibody expression vectors available at Pirbright

			ID			
	Species/IgG	Name	To linearise	Fwd extension	Rev extension	
	1 Mouse IgG1	pNeoSec-MmFc-IgG1	Kpn1 to Pst1	TGGGTTGCGTAGCT	GGGTGTCGTTTTGGC	1
:	2 Mouse IgG2a	pNeoSec-MmFc-IgG2a	Kpn1 to Pst1	TGGGTTGCGTAGCT	GGCTGTTGTTTTGGC	
;	3 Mouse IgG2b	pNeoSec-MmFc-IgG2b	Kpn1 to Pst1	TGGGTTGCGTAGCT	GGGTGTTGTTTTGGC	
	4 Mouse LC-к	pNeoSec-MmLC-к	Kpn1 to Pst1	TGGGTTGCGTAGCT	TGCAGCATCAGCCCG	
ł	5 Bovine IgG1	pNeoSec-BovFc-IgG1	Kpn1 to Pst1	TGGGTTGCGTAGCT	GCTGTGGTGGAGGC	
	6 Bovine IgG2	pNeoSec-BovFc-IgG2	Kpn1 to Pst1	TGGGTTGCGTAGCT	GATGCCAGAGGGTAG	Completed
	7 Bovine IgG3	pNeoSec-BovFc-IgG3	Kpn1 to Pst1	TGGGTTGCGTAGCT	GAACTCAGAGGGTAG	
	8 Bovine LC-λ	pNeoSec-BovLC-λ	Kpn1 to Pst1	TGGGTTGCGTAGCT	GGACTTGGGCTGACC	
	9 Chicken IgY	pNeoSec-GgY	Kpn1 to Pst1	TGGGTTGCGTAGCT	GCGATGTGGGGGCTCGC	
1	0 Chicken LC-λ	pNeoSec-GgLC-λ	Kpn1 to Pst1	TGGGTTGCGTAGCT	GGCCACCTTGGGCTG	
1	1 Swine LC-к	pNeoSec-SsLC-к	Kpn1 to Pst1	TGGGTTGCGTAGCT	TGGCTTGGCATCAGC	
1:	2 Swine LC-λ	pNeoSec-SsLC-λ	Kpn1 to Pst1	TGGGTTGCGTAGCT	AGCGGCCTTGGGCTG	
1	3 Swine IgG1	pNeoSec-SsFc-IgG1	Kpn1 to Pst1	TGGGTTGCGTAGCT	TGGGGCCGTCTTGGG	1
1	4 Swine IgG3	pNeoSec-SsFc-IgG3	Kpn1 to Pst1	TGGGTTGCGTAGCT	TGGAGCTGTGTTGTA	
1	5 Swine IgG5.1	pNeoSec-SsFc-IgG5.1	Kpn1 to Pst1	TGGGTTGCGTAGCT	TGGGGCCGTCTTGGG	VVork in
1	6 Swine IgG5.2	pNeoSec-SsFc-IgG5.2	Kpn1 to Pst1	TGGGTTGCGTAGCT	TGGGGCCGTCTTGGG	
1	7 Swine IgG6.1	pNeoSec-SsFc-IgG6.1	Kpn1 to Pst1	TGGGTTGCGTAGCT	TGGGGCCGTCTTGGG	piogress
1	8 Swine IgG6.2	pNeoSec-SsFc-IgG6.2	Kpn1 to Pst1	TGGGTTGCGTAGCT	TGGGGCCGTCTTGGG	
1	9 Mouse IgG1 Fab	pNeoSec-MmFc IgG Fab	Kpn1 to Pst1	TGGGTTGCGTAGCT	GGGTGTCGTTTTGGC	

- Mouse IgG1, IgG2a, IgG2b and Mouse LC-κ used for cloning last month
- Bovine, chicken and pig vectors yet to be tested

List of hybridomas for sequencing

			Antibody	Other names	Isotype	Antigen
1		1	AV 91	BF3	lgG1	Chicken CTLA-4
2		2	AV71	AF12	lgG1	Chicken CD40L
3		3	AV29	EG1	lgG2b	Chicken CD4
4	c	4	AV36	IE11	lgG1	Chicken CD3
5	ckei	5	AV7	AV7	lgG1	Chicken CD28
6	Chic	6	AV14	IB8	lgG2b	Chicken CD8a
7	-	7	AV37	AD4a	lgG2a	Chicken CD30
8		8	AV82	DC7	lgG2a	Chicken CD80
9		10	AV20	FE6	lgG1	Chicken Bu1 CHB6
10		11	2C10/D2	PD1 1.1	lgG1	Chicken PD1
11		14	CC58	DA3	lgG1	Bovine CD8
12		15	CC-G33	GF3	lgG1	Bovine CD14
13	/ine	16	CC-108	CD4a	lgG1	Bovine MHCII
14	Bov	17	CC39	EB3	lgG1	Bovine WC1
15		18	CC15	BB1	lgG2a	Bovine WC1
16		20	CC219	EC4	lgG1	Bovine CD28
17	ре	22	PPT23	FY2P1C5	lgG1	Porcine CD8b
18	orci	23	РРТЗ	CD3	lgG1	Porcine CD3
19	ă	25	PPT20	95FB4E11	lgG1	Porcine CD8.1aa
20		27	FD7	FD7	lgG1	MDV Meq
21	es	28	IB11	IB11	lgG2a	FMDV
22	irus	29	BD1	BD1	lgG2a	MDV pp38
23	>	36	CG12	CG12	lgG2a	Flu HA
24		38	JF8	JF8	lgG2a	Flu HA

Ongoing work

- Making porcine and Fab expression vectors
- Developing protocols for class switching (IgG3 and IgM to IgG1) as there is no need for IgM and IgG3 expression system

Iq	<u>G3</u>										
CT	GGT	'CAC	TGT	CTC	TGC	C <mark>GC</mark>	TAC	AAC.	AAC	AGC	2
L	V	Т	V	S	А	А	Т	Т	Т	А	
lgG	1(c)										
						GC	CAA	AAC	GAC	ACC	(
						А	K	Т	Т	Ρ	
Ig	G3	to	IgG	l c	las	S S	wit	ch ː	pri	mer	
CT	GGT	'CAC	TGT	CTC	TGC	<u>C</u> GC	CAA	AAC	GAC	ACC	
L	V	Т	V	S	А	A	K	Т	Т	Р	

- Developing protocols for isotype switching IgG1 to IgG2a/b for functional studies
- Developing protocols for species switching (start with porcine)
- Catalogue current stocks and clone/sequence of more hybridomas

New toolbox website

Leveraged money from the BBSRC Tools and Resources Fund (GCRF).

Basic design of a simple relational database backend that allows complex searches from the front end.

Should be easy for multiple curators to add and edit content, with a developer site and a live site- **link to Joan Lunney's** species toolbox groups.

This is not just about antibodies, all the way from genome variation through to PCR, isoforms, assays, expression etc

New toolbox website- Progress

- Likely bases around antigen/protein
- Database structure behind a web interface
- All fields searchable and linked across each field
- Capacity to have a 'star' rating for quality and/or validation
- Access agreement for some data based on an MTA model- no cost for academia- work ongoing
- Need to add in reagents for pathogens as well as host
- Species 'volunteers' to help curate have been identified
- Previous toolbox data considered high quality and the first data to translate into the new database
- First design will be pushed out for comment

New toolbox website- key data fields

Protein	Epitope (can be multiple for the same protein)	Antibody
name	location on protein	Antibody sequence
animal species	isoform location	name
Expression patterns	structural confirmation	monoclonal/polyclonal
alternative names	protein sequence (if applicable)	subclass
Gene name	post translational modifications	species raised in
interacting partners		antigen raised against
functions		FACS plots
isoforms		blocking antibody?
		utility (FACS, ELISA, IH etc)
Avialable tools		
recombinant expression vectors		Avialable tools
recombinantly expressed antigens		DNA sequence
		Gene blocks
		transfection protocols
		staining protocols
		hybridomas
		supernatents

Capability to add pathogens into the database

Protein Sequence	cDNA sequence	Genomic DNA sequence		
AA sequence	splice variants	DNA sequence		
oost translational modifications	exon/exon boundaries	location (genome)		
splice variants		size		
exon/intron boundaries	Potenially avialable tools	copy number variations		
	siRNA	Single nucleotide polymorhisms		
	primers	breed/line		
	DNA probes	non-coding single nuc polymophisms		
	protocols	promoter sequences		
		Avialable tools		
		Single nucleotide polymorhism positions		
		primers		
		probes		
		knock out phenotypes		
		transgenic cassettes		
		www.pirbright.ac.uk		

Immunological Toolbox Jayne Hope 22.05.18

Immunological Toolbox - RI

- From 2017-2022 Core Capability Grant funds 1 x FTE (2 posts)
- Fits within Institute Strategic Programme 2: Control of Infectious Diseases
 - Theme 3: Host responses underlying immunity
- Coordinated with the Pirbright Institute ISP
 - New reagent and assay development at RI

Immunological Toolbox - RI

Priorities will be guided by requirements of the veterinary immunology community but include:

- development of tools to study macrophage and **T cell** development and function;
- reagents and methods to dissect antibody responses of animals at the single B cell level to define the lg repertoire and retrieve desirable antibody specificities;
- recombinant cytokines and chemokines;
- immunoassay development e.g. multiplex platforms for detection of cytokines
- Livestock species (ruminants, pigs, chickens)
- (pathogen specific reagents e.g. against FMDV antigens)

Immunological Toolbox – Defining Priorities

- Joint steering committee to define priorities based on requests and input from network/community
 - Steering committee members from RI (Eleanor Riley, Jayne Hope, Mark Stevens) and Pirbright (John Hammond, Simon Graham) plus external independent member (Gary Entrican)
 - Reagent request forms detailing requirements, community need, funding, commercialisation/distribution plans
 - Costed on an individual basis
 - New mAbs will be sequenced and all reagent information entered onto the database
 - (publications)

Immunological Toolbox

Roslin Institute Anna Raper

Roslin.Toolbox@roslin.ed.ac.uk

THE UNIVERSITY of EDINBURGH

Expanding the veterinary reagent portfolio

ROSLN

Expanding the veterinary reagent portfolio through the production and characterisation of desirable reagents.

- Services offered:
- Production of Recombinant Proteins
 - Immunogens for antibody production, growth factors, use within *in vivo* studies or as standalone reagents.
- Production of Monoclonal Antibodies
 - The immunogen can either be provided by the client or generated by the Toolbox. Screening can either be carried out by the client or by the facility. Screening reagents such as cell lines can also be produced if required. The Toolbox also has a library of cell and tissue samples from a range of veterinary species which is available for screening.
- Assay Development
 - Such as flow cytometry, bioimaging or ELISA.
- Conjugation service
 - The labelling of antibodies, recombinant proteins and growth factors (examples of available tags are: biotin, HRP, fluorescent conjugates such as FITC, PE, Alexa647, Alexa488).

Work Flow – Monoclonal Antibody Production

Screening construct and recombinant protein

- CD107a (LAMP1)
 - Marker of lysosomal compartments
 - Marker of degranulation in NK and CD8⁺ T cells
- Screening construct
 - bvCD107a CHO cells
 - Full sequence bvCD107a
 - N terminal Flag tag
- Antigen
 - bvCD107a-mlgG2b Fc in HEK 293T cells
 - Recombinant bvCD107a
 - mlgG2b Fc tag

- Generation of chicken IL-10 ELISA
 - IL-10 is an anti-inflammatory cytokine which regulates nature and extend of inflammatory respond during infection
 - IL-10 antibodies and assay developed by Zhiguang Wu
 - Measured the expression of IL-10 in birds infected with Eimeria tenella

Wu et al, 2016, Comp. Dev. Immunol

- Novel Application of recombinant protein
 - Recombinant Porcine CSF1-Fc (generated by Pfizer)
 - Conjugated with fluorescent tag (Alexa647)
- CSF1R targeted using the recombinant protein
 - Validated using CSF1R expressing Ba/F3 cells lines
 - Cell lines generated in house as screening tools

ROSLN

Toolbox Members (Roslin) Anna Raper Lindsey Waddell

Toolbox Steering Committee Roslin Institute Jayne Hope Eleanor Riley <u>Pirbright</u> Simon Graham John Hammond <u>Moredun Institute</u> Gary Entrican Collaborators Roslin Institute Tim Connelley Ruben Barroso Zhiguang Wu Norrie Russell QMRI Clare Pridans Mater Research Institute-UQ David Hume University of Massachusetts Deborah Frenkel

Contact: Roslin.Toolbox@roslin.ed.ac.uk BBSR

Funding

Immunological Toolbox - opportunities

- Project submission form available on IVVN website soon
- Request for information on reagent validation/testing/cross-reactivity/utility etc for entry into database
- Discussion groups: supported by IUIS-VIC

Pig – Joan Lunney/Wilhelm Gerner Ruminant – Jayne Hope Chicken – Bernd Kaspers Fish – Carolina Tafalla-Pineiro

- International Society for Developmental and Comparative Immunology meeting (June 2018); Avian Immunology Research Group meeting (October 2018), European Veterinary Immunology Workshop (September 2018)
- Vetimm list (https://list.umass.edu/mailman/listinfo/vetimm)

