Preface content

Publications

There were a total of 249 results for your search.

A Modified Vaccinia Ankara Virus (MVA) Vaccine Expressing African Horse Sickness Virus (AHSV) VP2 Protects Against AHSV Challenge in an IFNAR -/- Mouse Model

African horse sickness (AHS) is a lethal viral disease of equids, which is transmitted by Culicoides midges that become infected after biting a viraemic host. The use of live attenuated vaccines has been vital for the control of this disease in endemic regions. However, there are safety concerns over their use in non-endemic countries. Research efforts over the last two decades have therefore focused on developing alternative vaccines based on recombinant baculovirus or live viral vectors expressing structural components of the AHS virion.

Ns1 Is a Key Protein in the Vaccine Composition to Protect Ifnar(−/−) Mice against Infection with Multiple Serotypes of African Horse Sickness Virus

African horse sickness virus (AHSV) belongs to the genus Orbivirus. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA) expressing VP2 and NS1 proteins from AHSV-4. IFNAR((-/-)) mice inoculated with DNA/rMVA-VP2,-NS1 from AHSV-4 in an heterologous prime-boost vaccination strategy generated significant levels of neutralizing antibodies specific of AHSV-4. In addition, vaccination stimulated specific T cell responses against the virus.

Modelling the influence of foot-and-mouth disease vaccine antigen stability and dose on the bovine immune response.

Foot and mouth disease virus causes a livestock disease of significant global socio-economic importance. Advances in its control and eradication depend critically on improvements in vaccine efficacy, which can be best achieved by better understanding the complex within-host immunodynamic response to inoculation. We present a detailed and empirically parametrised dynamical mathematical model of the hypothesised immune response in cattle, and explore its behaviour with reference to a variety of experimental observations relating to foot and mouth immunology.

Interferon-γ induced by in vitro re-stimulation of CD4+ T-cells correlates with in vivo FMD vaccine induced protection of cattle against disease and persistent infection.

The immune defense against FMDV has been correlated to the antibody mediated component. However, there are occasions when some animals with high virus neutralising (VN) antibody are not protected following challenge and some with low neutralising antibody which do not succumb to disease. The importance of cell mediated immunity in clinical protection is less clear and so we investigated the source and production of interferon-gamma (IFN-γ) in re-stimulated whole blood of FMDV immunized cattle and its correlation to vaccine induced protection and FMDV persistence.

Immune responses in pigs vaccinated with adjuvanted and non-adjuvanted A(H1N1)pdm/09 influenza vaccines used in human immunization programmes.

Following the emergence and global spread of a novel H1N1 influenza virus in 2009, two A(H1N1)pdm/09 influenza vaccines produced from the A/California/07/09 H1N1 strain were selected and used for the national immunisation programme in the United Kingdom: an adjuvanted split virion vaccine and a non-adjuvanted whole virion vaccine. In this study, we assessed the immune responses generated in inbred large white pigs (Babraham line) following vaccination with these vaccines and after challenge with A(H1N1)pdm/09 virus three months post-vaccination.

Economic Impact of Disease Control - Veterinary Vaccination Strategies

Professor Johnathan Rushton's Case Study presentation on Economic Impact of Disease Control - Veterinary Vaccination Strategies.

Presentation from the Veterinary Vaccinology Network Conference 2015

Phenotypic and functional differentiation of porcine alpha beta T cells: Current Knowledge and available tools

Domestic pigs are considered as a valuable large animal model because of their close relation to humans in regard to anatomy, genetics and physiology. This includes their potential use as organ donors in xenotransplantation but also studies on various zoonotic infections affecting pigs and humans. Such work also requires a thorough understanding of the porcine immune system which was partially hampered in the past by restrictions on available immunological tools compared to rodent models.

Evidence for a common mucosal immune system in the pig.

The majority of lymphocytes activated at mucosal sites receive instructions to home back to the local mucosa, but a portion also seed distal mucosa sites. By seeding distal sites with antigen-specific effector or memory lymphocytes, the foundation is laid for the animal's mucosal immune system to respond with a secondary response should to this antigen be encountered at this site in the future. The common mucosal immune system has been studied quite extensively in rodent models but less so in large animal models such as the pig.

The bovine model for elucidating the role of gamma delta T cells in controlling infectious diseases of importance to cattle and humans

There are several instances of co-investigation and related discoveries and achievements in bovine and human immunology; perhaps most interesting is the development of the BCG vaccine, the tuberculin skin test and the more recent interferon-gamma test that were developed first in cattle to prevent and diagnosis bovine tuberculosis and then applied to humans. There are also a number of immune-physiological traits that ruminant share with humans including the development of their immune systems in utero which increases the utility of cattle as a model for human immunology.

Immunology of bovine respiratory syncytial virus in calves

Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease in young calves. The virus is genetically and antigenically closely related to human (H)RSV, which is a major cause of respiratory disease in young infants. As a natural pathogen of calves, BRSV infection recapitulates the pathogenesis of respiratory disease in man more faithfully than semi-permissive, animal models of HRSV infection.

Pages

Call to action content

Newsletter

Trim content

Copyright: The Pirbright Institute 2014-2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.