Preface content

Publications

There were a total of 249 results for your search.

Model systems to analyse the role of miRNAs and commensal microflora in bovine mucosal immune system development

Information is rapidly accumulating regarding the role of miRNAs as key regulators of immune system development and function. It is also increasingly evident that miRNAs play an important role in host-pathogen interactions through regulation of both innate and acquired immune responses. Little is known, however, about the specific role of miRNAs in regulating normal development of the mucosal immune system, especially during the neonatal period.

Exploiting ovine immunology to improve the relevance of biomedical models

Animal models of human disease are important tools in many areas of biomedicine; for example, in infectious disease research and in the development of novel drugs and medical devices. Most studies involving animals use rodents, in particular congenic mice, due to the availability of a wide number of strains and the ease with which they can be genetically manipulated. The use of mouse models has led to major advances in many fields of research, in particular in immunology but despite these advances, no animal model can exactly reproduce all the features of human disease.

Understanding Rift Valley Fever: Contributions of animal models to disease characterisation and control

Rift Valley fever (RVF) is a mosquito-borne viral zoonosis with devastating health impacts in domestic ruminants and humans. Effective vaccines and accurate disease diagnostic tools are key components in the control of RVF. Animal models reproducing infection with RVF virus are of upmost importance in the development of these disease control tools. Rodent infection models are currently used in the initial steps of vaccine development and for the study of virus induced pathology.

The equine responses to infectious and allergic disease: A model for humans?

The modern horse, Equus caballus has historically made important contributions to the field of immunology, dating back to Emil von Behring's description of curative antibodies in equine serum over a century ago. While the horse continues to play an important role in human serotherapy, the mouse has replaced the horse as the predominant experimental animal in immunology research. Nevertheless, continuing efforts have led to an improved understanding of the equine immune response in a variety of infectious and non-infectious diseases.

The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors

The baculovirus expression vector system (BEVS) platform has become an established manufacturing platform for the production of viral vaccines and gene therapy vectors. Nine BEVS-derived products have been approved - four for human use (Cervarix®, Provenge®, Glybera® and Flublok®) and five for veterinary use (Porcilis® Pesti, BAYOVAC CSF E2®, Circumvent® PCV, Ingelvac CircoFLEX® and Porcilis® PCV). The BEVS platform offers many advantages, including manufacturing speed, flexible product design, inherent safety and scalability.

The challenges in developing effective canine infectious respiratory disease vaccines

OBJECTIVES:

Canine infectious respiratory disease (CIRD) is a disease of multifactorial aetiology, where multiple pathogens act sequentially or synergistically to cause disease. It is common within large dog populations, such as those in re-homing or training kennels. Vaccines are vital in its management of CIRD, but they often fail to prevent disease. Recently, a number of novel pathogens have been identified in CIRD outbreaks and represent new targets for vaccination.

KEY FINDINGS:

Potential benefits of cattle vaccination as a supplementary control for bovine tuberculosis

Vaccination for the control of bovine tuberculosis (bTB) in cattle is not currently used within any international control program, and is illegal within the EU. Candidate vaccines, based upon Mycobacterium bovis bacillus Calmette-Guérin (BCG) all interfere with the action of the tuberculin skin test, which is used to determine if animals, herds and countries are officially bTB-free. New diagnostic tests that Differentiate Infected from Vaccinated Animals (DIVA) offer the potential to introduce vaccination within existing eradication programs.

Vaccination with a live multi-gene deletion strain protects horses against virulent challenge with Streptococcus equi.

Strangles, caused by Streptococcus equi subspecies equi (S. equi) is one of the most frequently diagnosed infectious diseases of horses and there remains a significant need to develop new preventative vaccines. We generated a live vaccine strain of S. equi containing deletions in six genes: sagA, hasA, aroB, pyrC, seM and recA, which was administered to nine Welsh mountain ponies via the intramuscular route. Four vaccinated ponies developed adverse reactions following the first vaccination from which the live vaccine strain was isolated.

Field evaluation of the efficacy, compatibility and serologic profiling of a combined vaccine against porcine reproductive and respiratory syndrome and Haemophilus parasuis in nusery pigs

The aim of the study was to compare the efficacy and compatibility of a separate or combined vaccination against the porcine reproductive and respiratory syndrome (PRRS) and Haemophilus (H.) parasuis. The study was conducted in a 1200 head nursery farm. A total of 360 piglets at an age of 26 days were randomized into three groups. Group A was vaccinated separately against H. parasuis (Porcilis®Glässer) and PRRS (Porcilis®PRRS), group B was vaccinated with a combined vaccine of both vaccines and group C remained unvaccinated as control group.

Pages

Call to action content

Newsletter

Trim content

Copyright: The Pirbright Institute 2014-2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.